-
Notifications
You must be signed in to change notification settings - Fork 3
/
make_snapshotSType.py
275 lines (223 loc) · 9.67 KB
/
make_snapshotSType.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 21 15:11:31 2014
@author: ibackus
@editor: dflemin3
-Note: indentation is 4 spaces in this file, not a tab!
This module initializes an S-type binary system in which the gas disk is around
the primary, not both stars! Assumes a_bin >> r_disk such that the disk's
velocity is dominated by the influence of the primary.
"""
__version__ = "$Revision: 1 $"
# $Source$
import pynbody
SimArray = pynbody.array.SimArray
import numpy as np
import binaryUtils
import gc
import os
import AddBinary
import isaac
import calc_velocity
import ICgen_utils
import ICglobal_settings
global_settings = ICglobal_settings.global_settings
def snapshot_gen(ICobj):
"""
Generates a tipsy snapshot from the initial conditions object ICobj.
Returns snapshot, param
snapshot: tipsy snapshot
param: dictionary containing info for a .param file
Note: Code has been edited (dflemin3) such that now it returns a snapshot for a circumbinary disk
where initial conditions generated assuming star at origin of mass M. After gas initialized, replaced
star at origin with binary system who's center of mass lies at the origin and who's mass m1 +m2 = M
"""
print 'Generating snapshot...'
# Constants
G = SimArray(1.0,'G')
# ------------------------------------
# Load in things from ICobj
# ------------------------------------
print 'Accessing data from ICs'
settings = ICobj.settings
# snapshot file name
snapshotName = settings.filenames.snapshotName
paramName = settings.filenames.paramName
# particle positions
r = ICobj.pos.r
xyz = ICobj.pos.xyz
# Number of particles
nParticles = ICobj.pos.nParticles
# molecular mass
m = settings.physical.m
# star mass
m_star = settings.physical.M.copy()
# disk mass
m_disk = ICobj.sigma.m_disk.copy()
m_disk = isaac.match_units(m_disk, m_star)[0]
# mass of the gas particles
m_particles = m_disk / float(nParticles)
# re-scale the particles (allows making of low-mass disk)
m_particles *= settings.snapshot.mScale
# -------------------------------------------------
# Assign output
# -------------------------------------------------
print 'Assigning data to snapshot'
# Get units all set up
m_unit = m_star.units
pos_unit = r.units
if xyz.units != r.units:
xyz.convert_units(pos_unit)
# time units are sqrt(L^3/GM)
t_unit = np.sqrt((pos_unit**3)*np.power((G*m_unit), -1)).units
# velocity units are L/t
v_unit = (pos_unit/t_unit).ratio('km s**-1')
# Make it a unit, save value for future conversion
v_unit_vel = v_unit
#Ensure v_unit_vel is the same as what I assume it is.
assert(np.fabs(AddBinary.VEL_UNIT-v_unit_vel)<AddBinary.SMALL),"VEL_UNIT not equal to ChaNGa unit! Why??"
v_unit = pynbody.units.Unit('{0} km s**-1'.format(v_unit))
# Other settings
metals = settings.snapshot.metals
star_metals = metals
# Generate snapshot
# Note that empty pos, vel, and mass arrays are created in the snapshot
snapshot = pynbody.new(star=1,gas=nParticles)
snapshot['vel'].units = v_unit
snapshot['eps'] = 0.01*SimArray(np.ones(nParticles+1, dtype=np.float32), pos_unit)
snapshot['metals'] = SimArray(np.zeros(nParticles+1, dtype=np.float32))
snapshot['rho'] = SimArray(np.zeros(nParticles+1, dtype=np.float32))
snapshot.gas['pos'] = xyz
snapshot.gas['temp'] = ICobj.T(r)
snapshot.gas['mass'] = m_particles
snapshot.gas['metals'] = metals
snapshot.star['pos'] = SimArray([[ 0., 0., 0.]],pos_unit)
snapshot.star['vel'] = SimArray([[ 0., 0., 0.]], v_unit)
snapshot.star['mass'] = m_star
snapshot.star['metals'] = SimArray(star_metals)
# Estimate the star's softening length as the closest particle distance
eps = r.min()
# Make param file
param = isaac.make_param(snapshot, snapshotName)
param['dMeanMolWeight'] = m
gc.collect()
# CALCULATE VELOCITY USING calc_velocity.py. This also estimates the
# gravitational softening length eps
print 'Calculating circular velocity'
preset = settings.changa_run.preset
max_particles = global_settings['misc']['max_particles']
calc_velocity.v_xy(snapshot, param, changa_preset=preset, max_particles=max_particles)
gc.collect()
# -------------------------------------------------
# Estimate time step for changa to use
# -------------------------------------------------
# Save param file
isaac.configsave(param, paramName, 'param')
# Save snapshot
snapshot.write(filename=snapshotName, fmt=pynbody.tipsy.TipsySnap)
# est dDelta
dDelta = ICgen_utils.est_time_step(paramName, preset)
param['dDelta'] = dDelta
# -------------------------------------------------
# Create director file
# -------------------------------------------------
# largest radius to plot
r_director = float(0.9 * r.max())
# Maximum surface density
sigma_min = float(ICobj.sigma(r_director))
# surface density at largest radius
sigma_max = float(ICobj.sigma.input_dict['sigma'].max())
# Create director dict
director = isaac.make_director(sigma_min, sigma_max, r_director, filename=param['achOutName'])
## Save .director file
#isaac.configsave(director, directorName, 'director')
"""
Now that the gas disk is initializes around the primary (M=m1), add in the
second star as specified by the user.
"""
#Now that velocities and everything are all initialized for gas particles, create new snapshot to return in which
#single star particle is replaced by 2, same units as above
snapshotBinary = pynbody.new(star=2,gas=nParticles)
snapshotBinary['eps'] = 0.01*SimArray(np.ones(nParticles+2, dtype=np.float32), pos_unit)
snapshotBinary['metals'] = SimArray(np.zeros(nParticles+2, dtype=np.float32))
snapshotBinary['vel'].units = v_unit
snapshotBinary['pos'].units = pos_unit
snapshotBinary['mass'].units = snapshot['mass'].units
snapshotBinary['rho'] = SimArray(np.zeros(nParticles+2, dtype=np.float32))
#Assign gas particles with calculated/given values from above
snapshotBinary.gas['pos'] = snapshot.gas['pos']
snapshotBinary.gas['vel'] = snapshot.gas['vel']
snapshotBinary.gas['temp'] = snapshot.gas['temp']
snapshotBinary.gas['rho'] = snapshot.gas['rho']
snapshotBinary.gas['eps'] = snapshot.gas['eps']
snapshotBinary.gas['mass'] = snapshot.gas['mass']
snapshotBinary.gas['metals'] = snapshot.gas['metals']
#Load Binary system obj to initialize system
binsys = ICobj.settings.physical.binsys
m_disk = isaac.strip_units(np.sum(snapshotBinary.gas['mass']))
binsys.m1 = binsys.m1 + m_disk
#Recompute cartesian coords considering primary as m1+m_disk
binsys.computeCartesian()
x1,x2,v1,v2 = binsys.generateICs()
#Assign position, velocity assuming CCW orbit
snapshotBinary.star[0]['pos'] = SimArray(x1,pos_unit)
snapshotBinary.star[0]['vel'] = SimArray(v1,v_unit)
snapshotBinary.star[1]['pos'] = SimArray(x2,pos_unit)
snapshotBinary.star[1]['vel'] = SimArray(v2,v_unit)
"""
We have the binary positions about their center of mass, (0,0,0), so
shift the position, velocity of the gas disk to be around the primary.
"""
snapshotBinary.gas['pos'] += snapshotBinary.star[0]['pos']
snapshotBinary.gas['vel'] += snapshotBinary.star[0]['vel']
#Set stellar masses: Create simArray for mass, convert units to simulation mass units
snapshotBinary.star[0]['mass'] = SimArray(binsys.m1-m_disk,m_unit)
snapshotBinary.star[1]['mass'] = SimArray(binsys.m2,m_unit)
snapshotBinary.star['metals'] = SimArray(star_metals)
#Now that everything has masses and positions, adjust positions so the
#system center of mass corresponds to the origin
"""
com = binaryUtils.computeCOM(snapshotBinary.stars,snapshotBinary.gas)
print com
snapshotBinary.stars['pos'] -= com
snapshotBinary.gas['pos'] -= com
"""
print 'Wrapping up'
# Now set the star particle's tform to a negative number. This allows
# UW ChaNGa treat it as a sink particle.
snapshotBinary.star['tform'] = -1.0
#Set sink radius, stellar smoothing length as fraction of distance
#from primary to inner edge of the disk
r_sink = eps
snapshotBinary.star[0]['eps'] = SimArray(r_sink/2.0,pos_unit)
snapshotBinary.star[1]['eps'] = SimArray(r_sink/2.0,pos_unit)
param['dSinkBoundOrbitRadius'] = r_sink
param['dSinkRadius'] = r_sink
param['dSinkMassMin'] = 0.9 * binsys.m2
param['bDoSinks'] = 1
return snapshotBinary, param, director
def make_director(ICobj, res=1200):
director = {}
director['render'] = 'tsc'
director['FOV'] = 45.0
director['clip'] = [0.0001, 500]
director['up'] = [1, 0, 0]
director['project'] = 'ortho'
director['softgassph'] = 'softgassph'
director['physical'] = 'physical'
director['size'] = [res, res]
sig_set = ICobj.settings.sigma
mScale = ICobj.settings.snapshot.mScale
snapshot_name = ICobj.settings.filenames.snapshotName
f_prefix = os.path.splitext(os.path.basename(snapshot_name))[0]
director['file'] = f_prefix
if sig_set.kind == 'MQWS':
rmax = sig_set.rout + 3*sig_set.rin
zmax = float(rmax)
director['eye'] = [0, 0, zmax]
vmin = float(ICobj.rho(0, rmax))
vmax = float(ICobj.rho.rho_binned[0,:].max())
vmax *= mScale
director['logscale'] = [vmin, 10*vmax]
director['colgas'] = [1, 1, 1]
return director