-
Notifications
You must be signed in to change notification settings - Fork 2
/
skc.m
285 lines (269 loc) · 14.7 KB
/
skc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
function [kernel_buffer,kernel_buffer_history, kernel_top, kernel_top_history] = skc(x,y,final_depth,num_iter,m_values,seed,S,precond)
% function to carry out scalable kernel discovery on inputs x, outputs y
% up to depth = final_depth
% with num_iter rand inits for each kernel
% kernel_buffer is a struct array of size S which contains the top S kernels.
% kernel_buffer_history is a struct array that contains the kernels newly added to kernel_buffer at each depth.
% kernel_top is the struct for the kernel found by skd.
% kernel_top_history is a struct array of kernels that contains the kernel
% selected at each depth.
% Each kernel is a struct with fields: key, lb, ub (for BIC), gp_var, indices (of
% ind pts)
% precond is the preconditioner used for PCG for ub - can take values from:
% 'None','Nystrom','FIC','PIC'
base_kernels = construct_base_kernels(x,y); % create a dictionary of base kernels
%%% initialise kernel_buffer
kernel_buffer = struct('key',{},'lb',{},'ub',{},'gp_var',{},'indices',{});
%%% initialise kernel_buffer_history
kernel_buffer_history = struct('key',{},'lb',{},'ub',{},'gp_var',{},'indices',{});
%%% initialise kernel_top
kernel_top = struct('key',[],'lb',[],'ub',[],'gp_var',[],'indices',[]);
%%% initialise kernel_top_history
kernel_top_history = struct('key',{},'lb',{},'ub',{},'gp_var',{},'indices',{});
%%% initialise kernel_new, the cell array of kernels newly added to
%%% kernel_buffer at each depth - for the following depth, the three will
%%% only grow on these kernels
kernel_new = struct('key',{},'lb',{},'ub',{},'gp_var',{},'indices',{});
rng(seed);
[n,~] = size(x); % n is n_data
nm = length(m_values);
for depth = 1:final_depth
if depth == 1
for key_ind = 1:length(base_kernels.keys)
keys = base_kernels.keys; key = keys{key_ind}; % name of kernel
val = base_kernels(key); % gpcf in base kernel
lb_table = zeros(num_iter,nm); % stores lb for all iter
ub_table = zeros(1,nm); % stores ub for all m
gp_var_cell = cell(num_iter,nm); % stores lb gp_var for all iter
idx_cell = cell(num_iter,nm); % stores indices for ind pts for all iter
idx_u = 1:n; %idx_u used to store indices of subset for best LB for previous m
[gpcf_best,lik_best] = reinitialise_kernel(val,x,y); %temporary initialisation
for i = 1:nm
m = m_values(i);
parfor iter = 1:num_iter % change to parfor for parallel
rng(iter);
%%% optim for lb
if i==1 || iter <= 0.8*num_iter % use rand init of hyp for all iter of first m & 4/5 of iters for other m's
[xu,idx_cell{iter,i}] = datasample(x,m,1,'Replace',false);
[gpcf, lik] = reinitialise_kernel(val,x,y);
[lb_table(iter,i),gp_var_cell{iter,i}] = lbfunction(x,y,xu,gpcf,lik);
else % for 1/5 of iter, keep optimal ind pts from previous m, and also keep the hyp
weights = 1e-10*ones(1,n); %weights for sampling
weights(idx_u)=1; %make sure samples idx_u are included
[xu,idx_cell{iter,i}] = datasample(x,m,1,'Replace',false,'Weights',weights);
[lb_table(iter,i),gp_var_cell{iter,i}] = lbfunction(x,y,xu,gpcf_best,lik_best);
end
end
[~,ind] = max(lb_table(:,i));
idx_u = idx_cell{ind,i}; %indices of subset for best LB
%%% find ub for hyp from best LB
gp_var_best = gp_var_cell{ind,i};
gpcf_best = gp_var_best.cf{1};
lik_best = gp_var_best.lik;
ub_table(i) = ubfunction(x,y,gp_var_best,precond);
end
%%% gather best result for m=max(m_values), and store in kernel
[lb,ind] = max(lb_table(:,nm));
ub = ub_table(nm);
gp_var = gp_var_cell{ind,nm};
indices = idx_cell{ind,nm};
kernel = struct('key',key,'lb',lb,'ub',ub,'gp_var',gp_var,'indices',indices);
%%% compare kernel with previous kernels
n_buffer = length(kernel_buffer);
if n_buffer == 0 % buffer is empty
kernel_buffer(1) = kernel; kernel_top = kernel;
elseif ub < kernel_top.lb % kernel interval strictly below top kernel interval
% ignore kernel
elseif lb < kernel_top.lb % kernel interval overlaps with top kernel interval, but has lower lb than top_kernel
[buffer_min_val, buffer_min_ind] = findmin(kernel_buffer);
if n_buffer < S % buffer not full
kernel_buffer(n_buffer+1) = kernel;
elseif lb > buffer_min_val % if kernel has higher lb than some kernel in buffer
kernel_buffer(buffer_min_ind) = kernel;
end
else % kernel.lb > kernel_top.lb
kernel_top = kernel;
%%% compare kernels in buffer to new kernel_top, and see if
%%% they should remain or be deleted
for buffer_ind = 1:length(kernel_buffer)
buffer_kernel = kernel_buffer(buffer_ind);
if buffer_kernel.ub < lb % if kernel in buffer has strictly lower interval than kernel_top
kernel_buffer(buffer_ind) = [];
end
end
n_buffer_new = length(kernel_buffer);
if n_buffer_new < S % if buffer is not full
kernel_buffer(n_buffer_new+1) = kernel;
else % buffer full, so replace the buffer kernel with the lowest lb
[~, buffer_min_ind] = findmin(kernel_buffer);
kernel_buffer(buffer_min_ind) = kernel;
end
end
fprintf([key ' done. lb=%4.2f, ub = %4.2f \n'],lb,ub);
end
kernel_new = kernel_buffer;
else % if depth > 1
if isempty(kernel_new) % no new kernels found in search
return
else
kernel_buffer_old = kernel_buffer; % need for comparing with kernel_buffer after search at current depth
for parent_ind = 1:length(kernel_new)
key = kernel_new(parent_ind).key;
val = kernel_new(parent_ind).gp_var.cf{1};
lik = kernel_new(parent_ind).gp_var.lik;
for base_key_ind = 1:length(base_kernels.keys)
base_keys = base_kernels.keys; key_base = base_keys{base_key_ind};
val_base = base_kernels(key_base);
for comp = 0:1 % select kernel
if comp ==0 % kernel in previous depth + base kernel
key_new = ['(' key ')+' key_base];
else % kernel in previous depth * base kernel
key_new = ['(' key ')*' key_base];
end
lb_table = zeros(num_iter,nm); % stores lb for all iter
ub_table = zeros(1,nm); % stores ub for all iter
gp_var_cell = cell(num_iter,nm); % stores lb gp_var for all iter
idx_cell = cell(num_iter,nm); % stores indices for ind pts for all iter
idx_u = 1:n; %idx_u used to store indices of subset for best LB for previous m
[gpcf_best,lik_best] = reinitialise_kernel(val,x,y); %temporary initialisation
for i = 1:nm
m = m_values(i);
parfor iter = 1:num_iter
rng(iter);
%%% optim for lb
if i==1 || iter<=0.8*num_iter
% for m_min, or for 4/5 of the iter, split into half and half:
[val_base_new,~] = reinitialise_kernel(val_base,x,y);
if comp==0 % kernel in previous depth + base kernel
gpcf_new = gpcf_sum('cf',{val,val_base_new});
else % kernel in previous depth * base kernel
gpcf_new = gpcf_prod('cf',{val,val_base_new});
end
if mod(iter,2) == 0 % half: get optimal hyp from previous depth kernels, with new ind pts and hyps for current depth kernel
[xu,idx_cell{iter,i}] = datasample(x,m,1,'Replace',false);
[lb_table(iter,i),gp_var_cell{iter,i}] = lbfunction(x,y,xu,gpcf_new,lik);
else % other half: use random init of hyp and ind pts
[xu,idx_cell{iter,i}] = datasample(x,m,1,'Replace',false);
[gpcf_new,lik_new] = reinitialise_kernel(gpcf_new,x,y);
[lb_table(iter,i),gp_var_cell{iter,i}] = lbfunction(x,y,xu,gpcf_new,lik_new);
end
else % for 1/5 the iter, keep optimal ind pts and hyp from previous m
weights = 1e-10*ones(1,n); %weights for sampling
weights(idx_u)=1; %make sure samples idx_u are included
[xu,idx_cell{iter,i}] = datasample(x,m,1,'Replace',false,'Weights',weights);
[lb_table(iter,i),gp_var_cell{iter,i}] = lbfunction(x,y,xu,gpcf_best,lik_best);
end
end
[~,ind] = max(lb_table(:,i));
idx_u = idx_cell{ind,i}; %indices of subset for best LB
%%% find ub for hyp from best LB
gp_var_best = gp_var_cell{ind,i};
gpcf_best = gp_var_best.cf{1};
lik_best = gp_var_best.lik;
ub_table(i) = ubfunction(x,y,gp_var_best,precond);
end
%%% gather best result for m=max(m_values), and store in kernel
[lb,ind] = max(lb_table(:,nm));
ub = ub_table(nm);
gp_var = gp_var_cell{ind,nm};
indices = idx_cell{ind,nm};
kernel = struct('key',key_new,'lb',lb,'ub',ub,'gp_var',gp_var,'indices',indices);
%%% compare kernel with previous kernels
n_buffer = length(kernel_buffer);
if ub < kernel_top.lb % kernel interval strictly below top kernel interval
% ignore kernel
elseif lb < kernel_top.lb % kernel interval overlaps with top kernel interval, but has lower lb than top_kernel
[buffer_min_val, buffer_min_ind] = findmin(kernel_buffer);
if n_buffer < S % buffer not full
kernel_buffer(n_buffer+1) = kernel;
elseif lb > buffer_min_val % if kernel has higher lb than some kernel in buffer
kernel_buffer(buffer_min_ind) = kernel;
end
else % kernel.lb > kernel_top.lb
kernel_top = kernel;
%%% compare kernels in buffer to new kernel_top, and see if
%%% they should remain or be deleted
for buffer_ind = 1:length(kernel_buffer)
buffer_kernel = kernel_buffer(buffer_ind);
if buffer_kernel.ub < lb % if kernel in buffer has strictly lower interval than kernel_top
kernel_buffer(buffer_ind) = [];
end
end
n_buffer_new = length(kernel_buffer);
if n_buffer_new < S % if buffer is not full
kernel_buffer(n_buffer_new+1) = kernel;
else % buffer full, so replace the buffer kernel with the lowest lb
[~, buffer_min_ind] = findmin(kernel_buffer);
kernel_buffer(buffer_min_ind) = kernel;
end
end
fprintf([key_new ' done. lb=%4.2f, ub = %4.2f \n'],lb,ub);
end
end
end
kernel_new = findnew(kernel_buffer_old,kernel_buffer);
end
end
kernel_top_history(length(kernel_top_history)+1) = kernel_top;
kbh_length=length(kernel_buffer_history);
kernel_buffer_history((kbh_length+1):(kbh_length+length(kernel_new)))=kernel_new;
fprintf('depth %d done\n',depth);
end
end
function [min_val,min_ind] = findmin(buffer) % find min_ind, min_val of struct array of kernels
n_buffer = length(buffer);
if n_buffer == 0
error('buffer is empty')
end
buffer_lb = zeros(1,n_buffer);
for buffer_ind = 1:n_buffer % extract the lb of kernels in val into
buffer_lb(buffer_ind) = buffer(buffer_ind).lb;
end
[min_val,min_ind] = min(buffer_lb);
end
function kernel_new = findnew(kernel_buffer_old,kernel_buffer_new)
% find the new kernels that have been added to kernel_buffer_new from
% kernel_buffer old
new_keys = cell(1,length(kernel_buffer_new));
old_keys = cell(1,length(kernel_buffer_old));
for ind = 1:length(kernel_buffer_new)
new_keys{ind} = kernel_buffer_new(ind).key;
end
for ind = 1:length(kernel_buffer_old)
old_keys{ind} = kernel_buffer_old(ind).key;
end
new_ind = find(~ismember(new_keys,old_keys)); % the indices of new_kernels in kernel_buffer_new
kernel_new = kernel_buffer_new(new_ind); %logical indexing does not work for struct arrays
end
function base_kernels = construct_base_kernels(x,y)
ndims = size(x,2);
base_set = {'SE','LIN','PER'};
l = length(base_set);
if ndims > 1
keySet = cell(1,ndims*l);
valueSet = cell(1,ndims*l);
counter = 1;
for num_base = 1:l
base_ker = base_set{num_base};
for dim = 1:ndims
key = strcat(base_ker,num2str(dim));
keySet{counter} = key;
switch num_base % needs to be modified if base_set modified
case 1
valueSet{counter} = se_init(x,y,dim);
case 2
valueSet{counter} = lin_init(dim);
case 3
valueSet{counter} = per_init(x,y,dim);
otherwise
error('base_set larger than 3')
end
counter = counter +1;
end
end
else
keySet = base_set;
valueSet = {se_init(x,y),lin_init(),per_init(x,y)};
end
base_kernels=containers.Map(keySet,valueSet);
end