Skip to content

Latest commit

 

History

History
59 lines (39 loc) · 2.11 KB

README.md

File metadata and controls

59 lines (39 loc) · 2.11 KB

NumericalMath

Introduction

Functions from Numerical Mathematics for Julia.
[Version 0.2.1; 2014-07-23]

Functions

Linear algebra

  • trisolve(d0, d1, d2, rhs) -- solves triangular systems of equations

Polynomials

  • pval(p, x) -- evaluates polynomial p in x (Matlab-like order of coefficients)
  • horner(p, x) -- Horner schema returning the value of polynomial p at x and the value of its derivative p' at x
  • pzero(p, x0) -- finds a root of polynomial p near x0 applying Newton-Raphson
  • pfit(xi, yi, n) -- polynomial fitting of data points (of order n)

Root finding

  • ridders(f, a, b) -- Ridders' method for finding roots of univariate functions
  • brent_dekker(f, a, b) -- root finding using the Brent-Dekker approach

Interpolation and approximation

  • interp1d(xs, ys, x) -- Interpolation of data points with methods :constant, :nearest, :linear, :spline, :cubic
  • pchip(xs, ys, x) -- Piecewise cubic hermitean interpolating polynomial

Differentiation

  • fd_gradient(f, x0; h) -- numerical gradient of a multivariate function applying the "central difference formula"
  • fd_jacobian(f, x0; h) -- Jacobian matrix of multivariate function at x0
  • fd_hessian(f, x0; h) -- numerical Hessian, based on finite differences
  • fd_laplacian(f, x0; h) -- numerical Laplacian, based on finite differences
  • numderiv(f, x0; n, h) -- Richardson method applied to central difference
  • complex_step(f, x0; h) -- complex-step derivative

Integration

  • trapz(x, y) -- Trapezoidal rule for integrating discrete points (with end point correction terms)
  • romberg(f, a, b) -- Romberg integration (ie., utilizes Richardson's method)

Miscellaneous

  • agm(a, b) -- algebraic-geometric mean of numbers a, b
  • arc_length(f, a, b) -- arc length of the curve defined by f:[a,b] --> R

Special functions

  • lambertW(x) -- Lambert W function and its first derivative
  • legendre(n, x) -- Legendre polynomials of degree <= n at x

Examples