forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlab-03-X-minimizing_cost_tf_gradient.py
56 lines (45 loc) · 1.5 KB
/
lab-03-X-minimizing_cost_tf_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Lab 3 Minimizing Cost
# This is optional
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility
# tf Graph Input
X = [1, 2, 3]
Y = [1, 2, 3]
# Set wrong model weights
W = tf.Variable(5.)
# Linear model
hypothesis = X * W
# Manual gradient
gradient = tf.reduce_mean((W * X - Y) * X) * 2
# cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize: Gradient Descent Magic
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train = optimizer.minimize(cost)
# Get gradients
gvs = optimizer.compute_gradients(cost, [W])
# Optional: modify gradient if necessary
# gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
# Apply gradients
apply_gradients = optimizer.apply_gradients(gvs)
# Launch the graph in a session.
sess = tf.Session()
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())
for step in range(100):
print(step, sess.run([gradient, W, gvs]))
sess.run(apply_gradients)
# Same as sess.run(train)
'''
# Apply gradients
0 [37.333332, 5.0, [(37.333336, 5.0)]]
1 [33.848888, 4.6266665, [(33.848888, 4.6266665)]]
2 [30.689657, 4.2881775, [(30.689657, 4.2881775)]]
3 [27.825287, 3.9812808, [(27.825287, 3.9812808)]]
4 [25.228262, 3.703028, [(25.228264, 3.703028)]]
...
96 [0.0030694802, 1.0003289, [(0.0030694804, 1.0003289)]]
97 [0.0027837753, 1.0002983, [(0.0027837753, 1.0002983)]]
98 [0.0025234222, 1.0002704, [(0.0025234222, 1.0002704)]]
99 [0.0022875469, 1.0002451, [(0.0022875469, 1.0002451)]]
'''