forked from microsoft/muzic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
445 lines (392 loc) · 21.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
# !/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import os
import random
import sys
from datetime import datetime
import numpy as np
from tqdm import tqdm
from utils import swap_value
def main():
parser = argparse.ArgumentParser()
# path to data
parser.add_argument('--model_dir', default='model', type=str, required=False, help='directory of learned models')
parser.add_argument('--root_path', default='data/lyrics/', type=str, required=False, help='root path')
parser.add_argument('--raw_data_dir', default='lyric_with_final_small', type=str, required=False, help='directory of raw data')
parser.add_argument('--model_sign', default='1a', type=str, required=False, help='model sign, to identify each model')
parser.add_argument('--writer_dir', default='tensorboard_summary/', type=str, required=False, help='directory of tensorboard logs')
# path to dictionary
parser.add_argument('--tokenizer_path', default='tokenizations/chinese_dicts.txt', type=str, required=False, help='vocabulary of tokens')
parser.add_argument('--finalizer_path', default='tokenizations/finals.txt', type=str, required=False, help='vocabulary of finals')
parser.add_argument('--sentencer_path', default='tokenizations/sentences.txt', type=str, required=False, help='vocabulary of sentence numbers')
parser.add_argument('--poser_path', default='tokenizations/sentences.txt', type=str, required=False, help='vocabulary of intra-sentence positions')
parser.add_argument('--beater_path', default='tokenizations/beats.txt', type=str, required=False, help='vocabulary of beats')
# hyperparameters for training
parser.add_argument('--device', default='0', type=str, required=False, help='choose gpus')
parser.add_argument('--init_device', default=0, type=int, required=False, help='set the main gpu number')
parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,
help='model configurations')
parser.add_argument('--epochs', default=5, type=int, required=False, help='number of epochs')
parser.add_argument('--start_epoch', default=0, type=int, required=False, help='the initial epoch')
parser.add_argument('--batch_size', default=8, type=int, required=False, help='batch size')
parser.add_argument('--lr', default=1.5e-4, type=float, required=False, help='learning rate')
parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up steps')
parser.add_argument('--log_step', default=10, type=int, required=False,
help='steps of each printing of logs')
parser.add_argument('--stride', default=1024, type=int, required=False, help='windows of context in training')
parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='steps of gradient accumulation')
parser.add_argument('--fp16', action='store_true', help='mixed precision')
parser.add_argument('--fp16_opt_level', default='O1', type=str, required=False)
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--num_pieces', default=1, type=int, required=False, help='number of pieces of data')
parser.add_argument('--min_length', default=0, type=int, required=False, help='min length of the lyrics')
parser.add_argument('--pretrained_model', default='', type=str, required=False, help='path to the pretrianed model')
# ways to process data
parser.add_argument('--encoder_json', default="tokenizations/encoder.json", type=str, help="encoder.json", required=False)
parser.add_argument('--vocab_bpe', default="tokenizations/vocab.bpe", type=str, help="vocab.bpe", required=False)
parser.add_argument('--raw', action='store_true', help='whether the preprocessing is done', required=False)
parser.add_argument('--tokenize', action='store_true', help='whether the tokenization is done', required=False)
parser.add_argument('--segment', action='store_true', help='do Chinese Word Segmentation or not', required=False)
parser.add_argument('--bpe_token', action='store_true', help='use subword', required=False)
parser.add_argument('--enable_final', action='store_true', help='whether to use final embedding', required=False)
parser.add_argument('--enable_sentence', action='store_true', help='whether to use sentence embedding', required=False)
parser.add_argument('--enable_relative_pos', action='store_true', help='whether to use intra-sentence positional embedding', required=False)
parser.add_argument('--enable_beat', action='store_true', help='whether to use beat embedding', required=False)
parser.add_argument('--reverse', action='store_true', help='whether to use reverse language model', required=False)
parser.add_argument('--with_beat', action='store_true', help='whether to generate beat', required=False)
parser.add_argument('--beat_mode', default=0, type=int, help='beat mode:0.no control;1.global control;2.local control', required=False)
args = parser.parse_args()
print('args:\n' + args.__repr__())
# basic settings
# set envs and import related packages
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
import torch
import transformers
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from prepare_train_data import build_files_separate, read_lyrics, prepare_lyrics, get_shuffled_samples
from tokenizations.bpe_tokenizer import get_encoder
from module import GPT2Config, GPT2Model, GPT2LMHeadModel
# choose tokenizer
if args.segment:
from tokenizations import tokenization_bert_word_level as tokenization_bert
else:
from tokenizations import tokenization_bert
# set tokenizer
if args.bpe_token:
full_tokenizer = get_encoder(args.encoder_json, args.vocab_bpe)
full_tokenizer.max_len = 999999
else:
full_tokenizer = tokenization_bert.BertTokenizer(
vocab_file=args.tokenizer_path,
do_lower_case=False
)
full_finalizer = tokenization_bert.BertTokenizer(
vocab_file=args.finalizer_path,
tokenize_chinese_chars=False,
do_lower_case=False
)
full_sentencer = tokenization_bert.BertTokenizer(
vocab_file=args.sentencer_path,
tokenize_chinese_chars=False,
do_lower_case=False
)
full_poser = tokenization_bert.BertTokenizer(
vocab_file=args.poser_path,
tokenize_chinese_chars=False,
do_lower_case=False
)
full_beater = tokenization_bert.BertTokenizer(
vocab_file=args.beater_path,
tokenize_chinese_chars=False,
do_lower_case=False
)
# run tokenizeing
# dataset root key
key = args.root_path.rstrip('/').split('/')[-1]
# processed data root path
processed_path = os.path.join(args.root_path, args.raw_data_dir, 'processed')
tokenized_path = os.path.join(processed_path, 'tokenized')
reverse_str = '_reverse' if args.reverse else ''
tokenized_data_path = os.path.join(tokenized_path, f'tokenized{reverse_str}')
finalized_data_path = os.path.join(tokenized_path, f'finalized{reverse_str}')
sentenced_data_path = os.path.join(tokenized_path, f'sentenced{reverse_str}')
posed_data_path = os.path.join(tokenized_path, f'posed{reverse_str}')
beated_data_path = os.path.join(tokenized_path, f'beated{reverse_str}')
if args.tokenize:
# prepare data
if args.raw:
print('Processing from raw data...')
prepare_fn = {
'lyrics': prepare_lyrics
}
prepare_fn[key](
ins_path=os.path.join(args.root_path, args.raw_data_dir, 'raw'), # demo: data/lyrics/lyrics_22w/raw
out_path=processed_path, # demo: data/lyrics/lyrics_22w/processed
with_beat=args.with_beat,
beat_mode=args.beat_mode
)
print('Loading processed data for training...')
read_fn = {
'lyrics': read_lyrics,
}
train_lines, train_finals, train_sentences, train_pos, train_beats = read_fn[key](processed_path, reverse=args.reverse)
print('Tokenizing processed data for training...')
build_files_separate(num_pieces=args.num_pieces,
stride=args.stride,
min_length=args.min_length,
lines=train_lines,
finals=train_finals,
sentences=train_sentences,
pos=train_pos,
beats=train_beats,
tokenized_data_path=tokenized_data_path,
finalized_data_path=finalized_data_path,
sentenced_data_path=sentenced_data_path,
posed_data_path=posed_data_path,
beated_data_path=beated_data_path,
full_tokenizer=full_tokenizer,
full_finalizer=full_finalizer,
full_sentencer=full_sentencer,
full_poser=full_poser,
full_beater=full_beater,
enable_final=args.enable_final,
enable_sentence=args.enable_sentence,
enable_pos=args.enable_relative_pos,
enable_beat=args.enable_beat,
segment=args.segment)
print('End')
# Training settings
# calculate total training steps
full_len = 0
print('calculating total steps')
for i in tqdm(range(args.num_pieces)):
with open(os.path.join(tokenized_data_path, 'tokenized_train_{}.txt'.format(i)), 'r') as f:
full_len += len([int(item) for item in f.read().strip().split()])
total_steps = int(full_len / args.stride * args.epochs / args.batch_size / args.gradient_accumulation)
print('total steps = {}'.format(total_steps))
# build model
model_config = GPT2Config.from_json_file(args.model_config)
print('config:\n' + model_config.to_json_string())
if not args.pretrained_model:
model = GPT2LMHeadModel(config=model_config)
else:
model = GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model.train()
# set whether to use cuda
gpu_count = torch.cuda.device_count()
if gpu_count > 0:
device_ids = [int(i) for i in range(gpu_count)]
swap_value(device_ids, 0, args.init_device)
device = f'cuda:{device_ids[0]}'
else:
device = 'cpu'
print('using device:', device)
model.to(device)
# check parameters number of the built model
num_parameters = 0
parameters = model.parameters()
for parameter in parameters:
num_parameters += parameter.numel()
print('number of parameters: {}'.format(num_parameters))
# set optimizer
optimizer = transformers.AdamW(model.parameters(), lr=args.lr, correct_bias=True)
# change WarmupLinearSchedule to get_linear_schedule_with_warmup for current version of Transformers
scheduler = transformers.get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_steps)
# set whether to use 16-bits parameters to save GPU memory if your GPU support the operations of 16-bits number
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# set whether to use multi GPUs
multi_gpu = False
if gpu_count > 1:
print("Let's use", gpu_count, "GPUs!", device_ids)
model = DataParallel(model, device_ids=device_ids)
multi_gpu = True
# set log info
log_dir = os.path.join(args.writer_dir, key, f'{args.raw_data_dir}{reverse_str}', args.model_sign)
tb_writer = SummaryWriter(log_dir=log_dir)
assert args.log_step % args.gradient_accumulation == 0
output_dir = os.path.join(args.model_dir, key, f'{args.raw_data_dir}{reverse_str}', args.model_sign)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('starting training')
overall_step = 0
running_loss = 0
for epoch in range(args.start_epoch, args.epochs):
print('epoch {}'.format(epoch + 1))
now = datetime.now()
print('time: {}'.format(now))
# shuffle pieces of data
x = np.linspace(0, args.num_pieces - 1, args.num_pieces, dtype=np.int32)
random.shuffle(x)
piece_num = 0
# enumerate data pieces
for i in x:
# prepare training sentences
with open(os.path.join(tokenized_data_path, 'tokenized_train_{}.txt'.format(i)), 'r') as f:
line = f.read().strip()
tokens = line.split()
# print(len(tokens))
tokens = [int(token) for token in tokens]
# tokens = torch.Tensor(tokens)
if args.enable_final:
with open(os.path.join(finalized_data_path, 'tokenized_train_{}.txt'.format(i)), 'r') as f:
final = f.read().strip()
finals = final.split()
# print(len(finals))
finals = [int(final) for final in finals]
# finals = torch.Tensor(finals)
if args.enable_sentence:
with open(os.path.join(sentenced_data_path, 'tokenized_train_{}.txt'.format(i)), 'r') as f:
sentence = f.read().strip()
sentences = sentence.split()
# print(len(sentences))
sentences = [int(sentence) for sentence in sentences]
# sentences = torch.Tensor(sentences)
if args.enable_relative_pos:
with open(os.path.join(posed_data_path, 'tokenized_train_{}.txt'.format(i)), 'r') as f:
p = f.read().strip()
pos = p.split()
# print(len(sentences))
pos = [int(p) for p in pos]
# sentences = torch.Tensor(sentences)
if args.enable_beat:
with open(os.path.join(beated_data_path, 'tokenized_train_{}.txt'.format(i)), 'r') as f:
beat = f.read().strip()
beats = beat.split()
# print(len(sentences))
beats = [int(beat) for beat in beats]
# sentences = torch.Tensor(sentences)
# print('training: ', len(tokens), len(finals), len(sentences))
start_point = 0
samples_token, samples_final, samples_sentence, samples_pos, samples_beat = [], [], [], [], []
n_ctx = model_config.n_ctx # the length of a sentence for training
stride = args.stride
print(len(tokens))
while start_point < len(tokens) - stride:
samples_token.append(tokens[start_point: start_point + stride])
if args.enable_final:
samples_final.append(finals[start_point: start_point + stride])
if args.enable_sentence:
samples_sentence.append(sentences[start_point: start_point + stride])
if args.enable_relative_pos:
samples_pos.append(pos[start_point: start_point + stride])
if args.enable_beat:
samples_beat.append(beats[start_point: start_point + stride])
start_point += stride
if start_point < len(tokens):
samples_token.append(tokens[len(tokens) - stride:])
if args.enable_final:
samples_final.append(finals[len(tokens) - stride:])
if args.enable_sentence:
samples_sentence.append(sentences[len(tokens) - stride:])
if args.enable_relative_pos:
samples_pos.append(pos[len(tokens) - stride:])
if args.enable_beat:
samples_beat.append(beats[len(tokens) - stride:])
samples_token, samples_final, samples_sentence, samples_pos, samples_beat = get_shuffled_samples(
samples_token, samples_final,
samples_sentence, samples_pos, samples_beat
)
# print(len(samples_token), len(samples_final), len(samples_sentence), len(samples_))
# enumerate batch data
for step in range(len(samples_token) // args.batch_size): # drop last
# prepare batch data
batch_token = samples_token[step * args.batch_size: (step + 1) * args.batch_size]
batch_inputs_token = torch.Tensor(batch_token).long().to(device)
if samples_final is not None:
batch_final = samples_final[step * args.batch_size: (step + 1) * args.batch_size]
batch_inputs_final = torch.Tensor(batch_final).long().to(device)
else:
batch_inputs_final = None
if samples_sentence is not None:
batch_sentence = samples_sentence[step * args.batch_size: (step + 1) * args.batch_size]
batch_inputs_sentence = torch.Tensor(batch_sentence).long().to(device)
else:
batch_inputs_sentence = None
if samples_pos is not None:
batch_pos = samples_pos[step * args.batch_size: (step + 1) * args.batch_size]
batch_inputs_pos = torch.Tensor(batch_pos).long().to(device)
else:
batch_inputs_pos = None
if samples_beat is not None:
batch_beat = samples_beat[step * args.batch_size: (step + 1) * args.batch_size]
batch_inputs_beat = torch.Tensor(batch_beat).long().to(device)
else:
batch_inputs_beat = None
# forward pass
# Notes: Using Transformers, the labels are shifted inside the model,
# i.e. you can set labels = input_ids
outputs = model.forward(input_ids=batch_inputs_token,
sentence_ids=batch_inputs_sentence,
final_ids=batch_inputs_final,
pos_ids=batch_inputs_pos,
beat_ids=batch_inputs_beat,
labels=batch_inputs_token)
loss, logits = outputs[:2]
# get loss
if multi_gpu:
loss = loss.mean()
'''
running_loss += loss
overall_step += 1
'''
if args.gradient_accumulation > 1:
loss = loss / args.gradient_accumulation
# loss backward
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# optimizer step
if (overall_step + 1) % args.gradient_accumulation == 0:
running_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
# log info of training process
if (overall_step + 1) % args.log_step == 0:
loss_log = running_loss * args.gradient_accumulation / (args.log_step / args.gradient_accumulation)
tb_writer.add_scalar('loss', loss_log, overall_step)
print('now time: {}:{}. Step {} of piece {} of epoch {}, loss {}'.format(datetime.now().hour,
datetime.now().minute,
step + 1, piece_num,
epoch + 1, loss_log))
running_loss = 0
overall_step += 1
piece_num += 1
# save model per epoch
print('saving model for epoch {}'.format(epoch + 1))
if not os.path.exists(os.path.join(output_dir, 'model_epoch{}'.format(epoch + 1))):
os.mkdir(os.path.join(output_dir, 'model_epoch{}'.format(epoch + 1)))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(os.path.join(output_dir, 'model_epoch{}'.format(epoch + 1)))
# torch.save(scheduler.state_dict(), output_dir + 'model_epoch{}/scheduler.pt'.format(epoch + 1))
# torch.save(optimizer.state_dict(), output_dir + 'model_epoch{}/optimizer.pt'.format(epoch + 1))
print('epoch {} finished'.format(epoch + 1))
then = datetime.now()
print('time: {}'.format(then))
print('time for one epoch: {}'.format(then - now))
# save final model
print('training finished')
if not os.path.exists(os.path.join(output_dir, 'final_model')):
os.mkdir(os.path.join(output_dir, 'final_model'))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(os.path.join(output_dir, 'final_model'))
# torch.save(scheduler.state_dict(), output_dir + 'final_model/scheduler.pt')
# torch.save(optimizer.state_dict(), output_dir + 'final_model/optimizer.pt')
if __name__ == '__main__':
main()