-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_tg_star.py
206 lines (165 loc) · 6.96 KB
/
main_tg_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import sys
import os
import torch
import random
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
import math
from network_tg_star import GUNet
from mlp_dropout import MLPClassifier
from sklearn import metrics
from util import cmd_args, sep_tg_data
import os.path as osp
from torch_geometric.datasets import TUDataset
from torch_geometric.data import DataLoader
sys.path.append(
'%s/pytorch_structure2vec-master/s2v_lib' % os.path.dirname(
os.path.realpath(__file__)))
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
model = GUNet
# print("latent dim is ", cmd_args.latent_dim)
self.s2v = model(
latent_dim=cmd_args.latent_dim,
output_dim=cmd_args.out_dim,
num_node_feats=cmd_args.feat_dim,
num_edge_feats=0,
k=cmd_args.sortpooling_k)
# print("num_node_feats: ", cmd_args.feat_dim)
out_dim = cmd_args.out_dim
if out_dim == 0:
out_dim = self.s2v.dense_dim
# print("out dim is ", out_dim)
self.mlp = MLPClassifier(
input_size=out_dim, hidden_size=cmd_args.hidden,
num_class=cmd_args.num_class, with_dropout=cmd_args.dropout)
def forward(self, data):
# node_feat, labels = self.PrepareFeatureLabel(batch_graph)
labels = data.y
embed = self.s2v(data)
return self.mlp(embed, labels)
def output_features(self, data):
embed = self.s2v(data)
labels = data.y
return embed, labels
def loop_dataset(dataloader, classifier, optimizer=None, device=torch.device('cpu')):
total_loss = []
# total_iters = (len(sample_idxes) + (bsize - 1) * (optimizer is None)) // bsize # noqa
total_iters = len(dataloader)
pbar = tqdm(range(total_iters), unit='batch')
all_targets = []
all_scores = []
n_samples = 0
dataloader_iterator = iter(dataloader)
for pos in pbar:
data = next(dataloader_iterator)
# Deal with the data with no node attributes
if 'x' not in data.keys:
data.x = torch.ones(data.num_nodes, 1)
data = data.to(device)
num_selected = data.batch.max().item() + 1
targets = data.y
all_targets += targets.tolist()
logits, loss, acc = classifier(data)
# print("Preds: ")
# print(logits)
# print("Targets: ")
# print(targets)
all_scores.append(logits[:, 1].detach()) # for binary classification
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = loss.data.cpu().numpy()
pbar.set_description('loss: %0.5f acc: %0.5f' % (loss, acc))
total_loss.append(np.array([loss, acc]) * num_selected)
n_samples += num_selected
total_loss = np.array(total_loss)
avg_loss = np.sum(total_loss, 0) / n_samples
all_scores = torch.cat(all_scores).cpu().numpy()
# np.savetxt('test_scores.txt', all_scores) # output test predictions
all_targets = np.array(all_targets)
fpr, tpr, _ = metrics.roc_curve(all_targets, all_scores, pos_label=1)
auc = metrics.auc(fpr, tpr)
avg_loss = np.concatenate((avg_loss, [auc]))
return avg_loss
def count_parameters(model):
total_param = 0
for name, param in model.named_parameters():
if param.requires_grad:
num_param = np.prod(param.size())
if param.dim() > 1:
print(name, ':', 'x'.join(str(x) for x in list(param.size())), '=', num_param)
else:
print(name, ':', num_param)
total_param += num_param
return total_param
if __name__ == '__main__':
print(cmd_args)
random.seed(cmd_args.seed)
np.random.seed(cmd_args.seed)
torch.manual_seed(cmd_args.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
path = osp.join(osp.dirname(osp.realpath(__file__)), '.', 'data', cmd_args.data)
dataset = TUDataset(path, name=cmd_args.data)
if cmd_args.sortpooling_k <= 1:
num_nodes_list = sorted([
g.num_nodes for g in dataset])
cmd_args.sortpooling_k = num_nodes_list[
int(math.ceil(cmd_args.sortpooling_k * len(num_nodes_list))) - 1]
cmd_args.sortpooling_k = max(10, cmd_args.sortpooling_k)
print('k used in SortPooling is: ' + str(cmd_args.sortpooling_k))
# Ten Folds validation
train_dataset, test_dataset = sep_tg_data(dataset, cmd_args.fold-1)
print('# train: %d, # test: %d' % (len(train_dataset), len(test_dataset)))
print('# num of classes: ', dataset.num_classes)
test_loader = DataLoader(test_dataset, batch_size=cmd_args.batch_size)
train_loader = DataLoader(train_dataset, batch_size=cmd_args.batch_size, shuffle=True)
cmd_args.feat_dim = dataset.num_node_features
cmd_args.num_class = dataset.num_classes
if cmd_args.feat_dim == 0:
cmd_args.feat_dim = 1
classifier = Classifier().to(device)
print("Number of Model Parameters: ", count_parameters(classifier))
optimizer = optim.Adam(
classifier.parameters(), lr=cmd_args.learning_rate, amsgrad=True,
weight_decay=0.0008)
# train_idxes = list(range(len(train_graphs)))
best_loss = None
max_acc = 0.0
for epoch in range(cmd_args.num_epochs):
# random.shuffle(train_idxes)
classifier.train()
avg_loss = loop_dataset(train_loader, classifier, optimizer=optimizer, device=device)
if not cmd_args.printAUC:
avg_loss[2] = 0.0
print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m'
% (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) # noqa
classifier.eval()
test_loss = loop_dataset(test_loader, classifier, device=device)
if not cmd_args.printAUC:
test_loss[2] = 0.0
print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m'
% (epoch, test_loss[0], test_loss[1], test_loss[2])) # noqa
max_acc = max(max_acc, test_loss[1])
with open('acc_result_tg_%s_star.txt' % cmd_args.data, 'a+') as f:
# f.write(str(test_loss[1]) + '\n')
f.write(str(max_acc) + '\n')
if cmd_args.printAUC:
with open('auc_results_tg_star.txt', 'a+') as f:
f.write(str(test_loss[2]) + '\n')
# if cmd_args.extract_features:
# features, labels = classifier.output_features(train_graphs)
# labels = labels.type('torch.FloatTensor')
# np.savetxt('extracted_features_train.txt', torch.cat(
# [labels.unsqueeze(1), features.cpu()], dim=1).detach().numpy(),
# '%.4f')
# features, labels = classifier.output_features(test_graphs)
# labels = labels.type('torch.FloatTensor')
# np.savetxt('extracted_features_test.txt', torch.cat(
# [labels.unsqueeze(1), features.cpu()], dim=1).detach().numpy(),
# '%.4f')