-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday_02.py
231 lines (160 loc) · 6.04 KB
/
day_02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
# li = load_iris()
# print("获取特征值")
# print(li.data)
# print("目标值")
# print(li.target)
# print(li.DESCR)
# 注意返回值, 训练集 train x_train, y_train 测试集 test x_test, y_test
# x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)
#
# print("训练集特征值和目标值:", x_train, y_train)
# print("测试集特征值和目标值:", x_test, y_test)
# news = fetch_20newsgroups(subset='all')
#
# print(news.data)
# print(news.target)
#
# lb = load_boston()
#
# print("获取特征值")
# print(lb.data)
# print("目标值")
# print(lb.target)
# print(lb.DESCR)
def knncls():
"""
K-近邻预测用户签到位置
:return:None
"""
# 读取数据
data = pd.read_csv("./data/FBlocation/train.csv")
# print(data.head(10))
# 处理数据
# 1、缩小数据,查询数据晒讯
data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
# 处理时间的数据
time_value = pd.to_datetime(data['time'], unit='s')
print(time_value)
# 把日期格式转换成 字典格式
time_value = pd.DatetimeIndex(time_value)
# 构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 把时间戳特征删除
data = data.drop(['time'], axis=1)
print(data)
# 把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# 取出数据当中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
# # fit, predict,score
# knn.fit(x_train, y_train)
#
# # 得出预测结果
# y_predict = knn.predict(x_test)
#
# print("预测的目标签到位置为:", y_predict)
#
# # 得出准确率
# print("预测的准确率:", knn.score(x_test, y_test))
# 构造一些参数的值进行搜索
param = {"n_neighbors": [3, 5, 10]}
# 进行网格搜索
gc = GridSearchCV(knn, param_grid=param, cv=2)
gc.fit(x_train, y_train)
# 预测准确率
print("在测试集上准确率:", gc.score(x_test, y_test))
print("在交叉验证当中最好的结果:", gc.best_score_)
print("选择最好的模型是:", gc.best_estimator_)
print("每个超参数每次交叉验证的结果:", gc.cv_results_)
return None
def naviebayes():
"""
朴素贝叶斯进行文本分类
:return: None
"""
news = fetch_20newsgroups(subset='all')
# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)
# 对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)
# 进行朴素贝叶斯算法的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train, y_train)
y_predict = mlt.predict(x_test)
print("预测的文章类别为:", y_predict)
# 得出准确率
print("准确率为:", mlt.score(x_test, y_test))
print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))
return None
def decision():
"""
决策树对泰坦尼克号进行预测生死
:return: None
"""
# 获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
# 处理数据,找出特征值和目标值
x = titan[['pclass', 'age', 'sex']]
y = titan['survived']
print(x)
# 缺失值处理
x['age'].fillna(x['age'].mean(), inplace=True)
# 分割数据集到训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 进行处理(特征工程)特征-》类别-》one_hot编码
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
print(dict.get_feature_names())
x_test = dict.transform(x_test.to_dict(orient="records"))
# print(x_train)
# 用决策树进行预测
# dec = DecisionTreeClassifier()
#
# dec.fit(x_train, y_train)
#
# # 预测准确率
# print("预测的准确率:", dec.score(x_test, y_test))
#
# # 导出决策树的结构
# export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])
# 随机森林进行预测 (超参数调优)
rf = RandomForestClassifier(n_jobs=-1)
param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}
# 网格搜索与交叉验证
gc = GridSearchCV(rf, param_grid=param, cv=2)
gc.fit(x_train, y_train)
print("准确率:", gc.score(x_test, y_test))
print("查看选择的参数模型:", gc.best_params_)
return None
if __name__ == "__main__":
decision()