Following https://mmdetection3d.readthedocs.io/en/latest/getting_started.html#installation
a. Create a conda virtual environment and activate it.
conda create -n vma python=3.8 -y
conda activate vma
b. Install PyTorch and torchvision following the official instructions.
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
# Recommended torch>=1.9
c. Install gcc>=5 in conda env (optional).
conda install -c omgarcia gcc-5 # gcc-6.2
d. Install mmcv-full.
pip install mmcv-full==1.4.0
# pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
e. Install mmdet and mmseg.
pip install mmdet==2.14.0
pip install mmsegmentation==0.14.1
f. Clone VMA.
git clone https://github.com/hustvl/VMA.git
g. Install mmdet3d
cd /path/to/VMA/mmdetection3d
python setup.py develop
h. Install other requirements.
cd /path/to/VMA
pip install -r requirements.txt
i. Prepare pretrained models.
We use iCurb backbone provided in iCurb to train NYC Planimetric Database and resnet-152 to train our custom data.
cd /path/to/VMA
mkdir ckpts
cd ckpts
wget https://download.pytorch.org/models/resnet152-b121ed2d.pth
You can download our remapped iCurb backbone in Baidu/Google.