forked from MRCIEU/gwas2vcf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vcf.py
249 lines (216 loc) · 9.59 KB
/
vcf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import logging
import pickle
from heapq import heappop
import numpy as np
import pysam
class Vcf:
# no longer necessary
# @staticmethod
# def convert_pval_to_neg_log10(p):
# # prevent negative 0 output
# if p == 1:
# return 0
# # prevent Inf output
# if p == 0:
# return 999
# return -np.log10(p)
@staticmethod
def is_float32_lossy(input_float):
if (
input_float == 0
or input_float is None
or input_float == np.inf
or input_float == -np.inf
):
return False
# convert val to float32
out_float = np.float32(input_float)
return out_float in [0, np.inf, 0, -np.inf]
@staticmethod
def remove_illegal_chars(input_string):
if input_string is None:
return None
illegal_chars = (" ", ";", ":", "=", ",")
out_string = input_string.strip()
for bad_char in illegal_chars:
out_string = out_string.replace(bad_char, "_")
return out_string
"""
Write GWAS file to VCF
Expects an open file handle to a Pickle file of GWAS results & file index dict(chromosome[(position, offset)])
"""
@staticmethod
def write_to_file(
gwas_file,
gwas_idx,
path,
fasta,
build,
trait_id,
variant_id,
sample_metadata=None,
file_metadata=None,
csi=False,
fast_mode=False,
):
logging.info(f"Writing headers to BCF/VCF: {path}")
header = pysam.VariantHeader()
# INFO
header.add_line(
'##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">'
)
# FORMAT
header.add_line(
'##FORMAT=<ID=ES,Number=A,Type=Float,Description="Effect size estimate relative to the alternative allele">'
)
header.add_line(
'##FORMAT=<ID=SE,Number=A,Type=Float,Description="Standard error of effect size estimate">'
)
header.add_line(
'##FORMAT=<ID=LP,Number=A,Type=Float,Description="-log10 p-value for effect estimate">'
)
header.add_line(
'##FORMAT=<ID=AF,Number=A,Type=Float,Description="Alternate allele frequency in the association study">'
)
header.add_line(
'##FORMAT=<ID=SS,Number=A,Type=Integer,Description="Sample size used to estimate genetic effect">'
)
header.add_line(
'##FORMAT=<ID=EZ,Number=A,Type=Float,Description="Z-score provided if it was used to derive the EFFECT and SE fields">'
)
header.add_line(
'##FORMAT=<ID=SI,Number=A,Type=Float,Description="Accuracy score of summary data imputation">'
)
header.add_line(
'##FORMAT=<ID=NC,Number=A,Type=Integer,Description="Number of cases used to estimate genetic effect">'
)
header.add_line(
'##FORMAT=<ID=ID,Number=1,Type=String,Description="Study variant identifier">'
)
# META
header.add_line(
'##META=<ID=TotalVariants,Number=1,Type=Integer,Description="Total number of variants in input">'
)
header.add_line(
'##META=<ID=VariantsNotRead,Number=1,Type=Integer,Description="Number of variants that could not be read">'
)
header.add_line(
'##META=<ID=HarmonisedVariants,Number=1,Type=Integer,Description="Total number of harmonised variants">'
)
header.add_line(
'##META=<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description="Total number of variants that could not be harmonised">'
)
header.add_line(
'##META=<ID=SwitchedAlleles,Number=1,Type=Integer,Description="Total number of variants strand switched">'
)
header.add_line(
'##META=<ID=TotalControls,Number=1,Type=Integer,Description="Total number of controls in the association study">'
)
header.add_line(
'##META=<ID=TotalCases,Number=1,Type=Integer,Description="Total number of cases in the association study">'
)
header.add_line(
'##META=<ID=StudyType,Number=1,Type=String,Description="Type of GWAS study [Continuous or CaseControl]">'
)
# SAMPLES
header.samples.add(trait_id)
if file_metadata is not None:
meta_string = "".join(
f",{k}={sample_metadata[k]}" for k in sample_metadata)
header.add_line(f"##SAMPLE=<ID={trait_id}{meta_string}>")
# CONTIG
assert len(fasta.references) == len(fasta.lengths)
for n, contig in enumerate(fasta.references):
header.add_line(
f"##contig=<ID={contig},length={fasta.lengths[n]}, assembly={build}>"
)
# add metadata
if file_metadata is not None:
for k in file_metadata:
header.add_line(f"##{k}={file_metadata[k]}")
vcf = pysam.VariantFile(path, "w", header=header)
# recall variant objects in chromosome position order
logging.info(f"Writing variants to BCF/VCF: {path}")
for contig in fasta.references:
if contig not in gwas_idx:
continue
while gwas_idx[contig]:
pointer = heappop(gwas_idx[contig])
if fast_mode:
result = gwas_file['{}_{}_{}'.format(contig, pointer[0], pointer[1])]
else:
# load GWAS result
gwas_file.seek(pointer[1])
result = pickle.load(gwas_file)
# result.nlog_pval = result.nlog_pval
# check floats
if Vcf.is_float32_lossy(result.b):
logging.warning(
f"Effect field cannot fit into float32. Expect loss of precision for: {result.b}"
)
if Vcf.is_float32_lossy(result.se):
result.se = np.float64(np.finfo(np.float32).tiny).item()
logging.warning(
f"Standard error field cannot fit into float32. Expect loss of precision for: {result.se}"
)
if Vcf.is_float32_lossy(result.nlog_pval):
logging.warning(
f"-log10(pval) field cannot fit into float32. Expect loss of precision for: {result.nlog_pval}"
)
if Vcf.is_float32_lossy(result.alt_freq):
logging.warning(
f"Allele frequency field cannot fit into float32. Expect loss of precision for: {result.alt_freq}"
)
if Vcf.is_float32_lossy(result.imp_z):
logging.warning(
f"Imputation Z score field cannot fit into float32. Expect loss of precision for: {result.imp_z}"
)
if Vcf.is_float32_lossy(result.imp_info):
logging.warning(
f"Imputation INFO field cannot fit into float32. Expect loss of precision for: {result.imp_info}"
)
record = vcf.new_record()
record.chrom = result.chrom
assert " " not in record.chrom
record.pos = result.pos
assert record.pos > 0
record.alleles = (result.ref, result.alt)
if variant_id == 'concatenate':
record.id = "{}_{}:{}:{}:{}".format(build, record.chrom,
record.pos,
record.alleles[0],
record.alleles[1])
elif variant_id == 'alphabetical_order':
sorted_alleles = sorted(record.alleles)
record.id = "{}_{}:{}:{}:{}".format(build, record.chrom,
record.pos,
sorted_alleles[0],
sorted_alleles[1])
else: # rsid
record.id = Vcf.remove_illegal_chars(result.dbsnpid)
record.filter.add(result.vcf_filter)
if result.b is not None:
record.samples[trait_id]["ES"] = result.b
if result.se is not None:
record.samples[trait_id]["SE"] = result.se
if result.nlog_pval is not None:
record.samples[trait_id]["LP"] = result.nlog_pval
if result.alt_freq is not None:
record.samples[trait_id]["AF"] = result.alt_freq
record.info["AF"] = result.alt_freq
if result.n is not None:
record.samples[trait_id]["SS"] = round(result.n)
if result.imp_z is not None:
record.samples[trait_id]["EZ"] = result.imp_z
if result.imp_info is not None:
record.samples[trait_id]["SI"] = result.imp_info
if result.ncase is not None:
record.samples[trait_id]["NC"] = round(result.ncase)
if result.dbsnpid is not None:
record.samples[trait_id]["ID"] = Vcf.remove_illegal_chars(result.dbsnpid)
# write to file
vcf.write(record)
vcf.close()
# index output file
logging.info("Indexing output file")
pysam.tabix_index(path, preset="vcf", force=True, csi=csi)