-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering.r
34 lines (26 loc) · 1.51 KB
/
clustering.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
library(sqldf)
library(fpc)
TOPN = 5000
german_embeddings <- read.delim("~/uparse/german.embeddings", nrows= TOPN,header=F,col.names=c("word","f1","f2","f3","f4","f5","f6","f7","f8","f9","f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20","f21","f22","f23","f24","f25"),sep='\t',blank.lines.skip=TRUE,quote = "",colClasses=c("character",rep("numeric",25)))
german_embeddings_features = subset(german_embeddings, select=c("f1","f2","f3","f4","f5","f6","f7","f8","f9","f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20","f21","f22","f23","f24","f25"))
#german.embeddings.matrix = scale(german.embeddings)
# DBSCAN Algorithm
d = dist(german_embeddings_features)
MinPts = 24
init = c(0.4)
optimDBSCAN <- function (eps) {
ds <- dbscan(german_embeddings_features, eps, MinPts,showplot=FALSE)
ncluster = max(ds$cluster)
s <- summary(silhouette(ds$cluster,d))[4]
#message(ncluster, " for eps=",eps, " and MinPts=",MinPts, ". Silhouette is ", s)
(s$avg.width*-1.)
}
for (MinPts in seq(8,100,4)){
o <- optimize(optimDBSCAN, lower = 0.001, upper=1,tol = 0.001)
message("Minimum nubmer of points=", MinPts, " best result ",(o$objective * -1.), " with eps=",o$minimum)
}
#german_embeddings$cluster = predict(ds, german_embeddings_features, german_embeddings_features)
#german_embeddings_filtered= sqldf("select word,cluster from german_embeddings where cluster != 0 order by cluster, word")
#cl <- kmeans(german.embeddings.matrix,centers=nopt,iter.max=300,nstart=1000)
#s <- silhouette(cl$cluster,d)
#plot(s)