-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
inference.py
304 lines (268 loc) · 12.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import time
from pprint import pformat
import colossalai
import torch
import torch.distributed as dist
from colossalai.cluster import DistCoordinator
from mmengine.runner import set_random_seed
from tqdm import tqdm
from opensora.acceleration.parallel_states import set_sequence_parallel_group
from opensora.datasets import save_sample
from opensora.datasets.aspect import get_image_size, get_num_frames
from opensora.models.text_encoder.t5 import text_preprocessing
from opensora.registry import MODELS, SCHEDULERS, build_module
from opensora.utils.config_utils import parse_configs
from opensora.utils.inference_utils import (
add_watermark,
append_generated,
append_score_to_prompts,
apply_mask_strategy,
collect_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
get_save_path_name,
load_prompts,
merge_prompt,
prepare_multi_resolution_info,
refine_prompts_by_openai,
split_prompt,
)
from opensora.utils.misc import all_exists, create_logger, is_distributed, is_main_process, to_torch_dtype
def main():
torch.set_grad_enabled(False)
# ======================================================
# configs & runtime variables
# ======================================================
# == parse configs ==
cfg = parse_configs(training=False)
# == device and dtype ==
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg_dtype = cfg.get("dtype", "fp32")
assert cfg_dtype in ["fp16", "bf16", "fp32"], f"Unknown mixed precision {cfg_dtype}"
dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# == init distributed env ==
if is_distributed():
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
enable_sequence_parallelism = coordinator.world_size > 1
if enable_sequence_parallelism:
set_sequence_parallel_group(dist.group.WORLD)
else:
coordinator = None
enable_sequence_parallelism = False
set_random_seed(seed=cfg.get("seed", 1024))
# == init logger ==
logger = create_logger()
logger.info("Inference configuration:\n %s", pformat(cfg.to_dict()))
verbose = cfg.get("verbose", 1)
progress_wrap = tqdm if verbose == 1 else (lambda x: x)
# ======================================================
# build model & load weights
# ======================================================
logger.info("Building models...")
# == build text-encoder and vae ==
text_encoder = build_module(cfg.text_encoder, MODELS, device=device)
vae = build_module(cfg.vae, MODELS).to(device, dtype).eval()
# == prepare video size ==
image_size = cfg.get("image_size", None)
if image_size is None:
resolution = cfg.get("resolution", None)
aspect_ratio = cfg.get("aspect_ratio", None)
assert (
resolution is not None and aspect_ratio is not None
), "resolution and aspect_ratio must be provided if image_size is not provided"
image_size = get_image_size(resolution, aspect_ratio)
num_frames = get_num_frames(cfg.num_frames)
# == build diffusion model ==
input_size = (num_frames, *image_size)
latent_size = vae.get_latent_size(input_size)
model = (
build_module(
cfg.model,
MODELS,
input_size=latent_size,
in_channels=vae.out_channels,
caption_channels=text_encoder.output_dim,
model_max_length=text_encoder.model_max_length,
enable_sequence_parallelism=enable_sequence_parallelism,
)
.to(device, dtype)
.eval()
)
text_encoder.y_embedder = model.y_embedder # HACK: for classifier-free guidance
# == build scheduler ==
scheduler = build_module(cfg.scheduler, SCHEDULERS)
# ======================================================
# inference
# ======================================================
# == load prompts ==
prompts = cfg.get("prompt", None)
start_idx = cfg.get("start_index", 0)
if prompts is None:
if cfg.get("prompt_path", None) is not None:
prompts = load_prompts(cfg.prompt_path, start_idx, cfg.get("end_index", None))
else:
prompts = [cfg.get("prompt_generator", "")] * 1_000_000 # endless loop
# == prepare reference ==
reference_path = cfg.get("reference_path", [""] * len(prompts))
mask_strategy = cfg.get("mask_strategy", [""] * len(prompts))
assert len(reference_path) == len(prompts), "Length of reference must be the same as prompts"
assert len(mask_strategy) == len(prompts), "Length of mask_strategy must be the same as prompts"
# == prepare arguments ==
fps = cfg.fps
save_fps = cfg.get("save_fps", fps // cfg.get("frame_interval", 1))
multi_resolution = cfg.get("multi_resolution", None)
batch_size = cfg.get("batch_size", 1)
num_sample = cfg.get("num_sample", 1)
loop = cfg.get("loop", 1)
condition_frame_length = cfg.get("condition_frame_length", 5)
condition_frame_edit = cfg.get("condition_frame_edit", 0.0)
align = cfg.get("align", None)
save_dir = cfg.save_dir
os.makedirs(save_dir, exist_ok=True)
sample_name = cfg.get("sample_name", None)
prompt_as_path = cfg.get("prompt_as_path", False)
# == Iter over all samples ==
for i in progress_wrap(range(0, len(prompts), batch_size)):
# == prepare batch prompts ==
batch_prompts = prompts[i : i + batch_size]
ms = mask_strategy[i : i + batch_size]
refs = reference_path[i : i + batch_size]
# == get json from prompts ==
batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms)
original_batch_prompts = batch_prompts
# == get reference for condition ==
refs = collect_references_batch(refs, vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
)
# == Iter over number of sampling for one prompt ==
for k in range(num_sample):
# == prepare save paths ==
save_paths = [
get_save_path_name(
save_dir,
sample_name=sample_name,
sample_idx=start_idx + idx,
prompt=original_batch_prompts[idx],
prompt_as_path=prompt_as_path,
num_sample=num_sample,
k=k,
)
for idx in range(len(batch_prompts))
]
# NOTE: Skip if the sample already exists
# This is useful for resuming sampling VBench
if prompt_as_path and all_exists(save_paths):
continue
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
if cfg.get("llm_refine", False):
# only call openai API when
# 1. seq parallel is not enabled
# 2. seq parallel is enabled and the process is rank 0
if not enable_sequence_parallelism or (enable_sequence_parallelism and is_main_process()):
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# sync the prompt if using seq parallel
if enable_sequence_parallelism:
coordinator.block_all()
prompt_segment_length = [
len(prompt_segment_list) for prompt_segment_list in batched_prompt_segment_list
]
# flatten the prompt segment list
batched_prompt_segment_list = [
prompt_segment
for prompt_segment_list in batched_prompt_segment_list
for prompt_segment in prompt_segment_list
]
# create a list of size equal to world size
broadcast_obj_list = [batched_prompt_segment_list] * coordinator.world_size
dist.broadcast_object_list(broadcast_obj_list, 0)
# recover the prompt list
batched_prompt_segment_list = []
segment_start_idx = 0
all_prompts = broadcast_obj_list[0]
for num_segment in prompt_segment_length:
batched_prompt_segment_list.append(
all_prompts[segment_start_idx : segment_start_idx + num_segment]
)
segment_start_idx += num_segment
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=cfg.get("aes", None),
flow=cfg.get("flow", None),
camera_motion=cfg.get("camera_motion", None),
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# == Iter over loop generation ==
video_clips = []
for loop_i in range(loop):
# == get prompt for loop i ==
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == add condition frames for loop ==
if loop_i > 0:
refs, ms = append_generated(
vae, video_clips[-1], refs, ms, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
torch.manual_seed(1024)
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
masks = apply_mask_strategy(z, refs, ms, loop_i, align=align)
samples = scheduler.sample(
model,
text_encoder,
z=z,
prompts=batch_prompts_loop,
device=device,
additional_args=model_args,
progress=verbose >= 2,
mask=masks,
)
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
video_clips.append(samples)
# == save samples ==
if is_main_process():
for idx, batch_prompt in enumerate(batch_prompts):
if verbose >= 2:
logger.info("Prompt: %s", batch_prompt)
save_path = save_paths[idx]
video = [video_clips[i][idx] for i in range(loop)]
for i in range(1, loop):
video[i] = video[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video, dim=1)
save_path = save_sample(
video,
fps=save_fps,
save_path=save_path,
verbose=verbose >= 2,
)
if save_path.endswith(".mp4") and cfg.get("watermark", False):
time.sleep(1) # prevent loading previous generated video
add_watermark(save_path)
start_idx += len(batch_prompts)
logger.info("Inference finished.")
logger.info("Saved %s samples to %s", start_idx, save_dir)
if __name__ == "__main__":
main()