-
Notifications
You must be signed in to change notification settings - Fork 2
/
tests.py
executable file
·206 lines (177 loc) · 8.49 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/python
from thresholdRSA import *
##############################################################
# Testing Area
# Basically I just print stuff out to see that it makes sense.
# To run tests, just do ./tests.py in the working directory.
##############################################################
def brian_dealing_tests():
network = Network()
network.setup()
M = get_random_prime(N+1,2*N)
print network.dealing_algorithm()
# works with hard coded N must be changed in code
# as in the function should not normally take an N so it has to be changed
# should get in in sync with the rest so it checks the generated N
def brian_parallel_trial_division():
network = Network()
#network.setup()
N = 32771*32779*32868
print "should be false"
print network.parallel_trial_division(N)
N = 1000000007
print "should be true"
print network.parallel_trial_division(N)
#brian_parallel_trial_division()
def brian_primality_test():
network = Network()
product_prime_test = False
counter = 0
while not product_prime_test:
if counter %100==0:
print counter
counter+=1
network.generate_N(fake=True)
M = network.nodes[0].M
N = mod(network.nodes[0].N,M)
p = 0
q = 0
for computer in network.nodes:
p=add(p,computer.p_i)
if not gmpy2.is_prime(p):
#print "p not prime"
continue
for computer in network.nodes:
q=add(q,computer.q_i)
if not gmpy2.is_prime(q):
print "q not prime"
continue
if N!=p*q:
raise RuntimeError(" N!=p*q,M")
trial = network.parallel_trial_division()
if trial:
product_prime_test = network.load_balance_primality_test()
print "N",N
print "M",M
for computer in network.nodes:
print "p_i",computer.p_i
print "q_i",computer.q_i
print "found a good N"
#brian_primality_test()
# Just observe the output and make sure it's right.
# (Expect to fail, then [0, 1, 2, 5], then fail, then [0, 1, 2, 6], then fail.)
def hanna_subset_presigning_test():
print "---------------------------------------"
print "SUBSET PRESIGNING TEST"
print "---------------------------------------"
network = Network(range(4, 7))
network.setup()
print "Try with 3 people."
network.sign(100)
print "\nTry with 4 people."
network.nodes[2].change_choice(True)
network.sign(200)
print "\nTry with same 4 people."
network.nodes[8].change_choice(True)
network.sign(300)
print "\nRemove one person."
network.nodes[5].change_choice(False)
network.sign(400)
print "\nAdd back in the removed person."
network.nodes[5].change_choice(True)
network.sign(500)
def hanna_bgw_test():
network = Network([])
trues = []
for i in xrange(10):
#M = get_random_prime(10*1024,10**1025)
M = 102277922045560377677425330733025540787828481406916984309906917658679563028615294226321554724723272942310661725952704155095478409778315613883726668677544055422016936511783428122218075870314606203578763039546078374498114291572003824750681852245916170997581540628197467671968077726679505726524448218294989785311398744742887714607819190071055856821147699026221351085249350463784780552304793306340277073393234968722571984036002634583
#print "M: ", M
p = [86073950554594054572046690813007382342109102384982873842578803184201536538628877943140512481095441062578889315568924246909030737312145088325059810507040947056485625875756370588738118390330828479680886357865404929186692081823717077462607913020535808188545300482454371354899092671392059817217866027812302221790516334624841426374822243837469451461726437020877123437782393406169448247482389879889853884819427619825160765790492976489, 32407942981932646210757279840036316891438758043868220934656228948956052979972832566362084487255663759463544820767559816372895344932341051117333716341006216731062621272054115066959914959967555447795753363361346887552670700379791925909850634358182903529964036492908336599792343255213780081620709422813254894714838389206701419934353928895006100613053388612471685723250816647677863154446863487298710309194686622766578315607528333288, 69869979063627731466668050892989223896389723363048763375250688709723510048642461659959470237467609182847116905185144338722583064845974562766392952336537838690954315239729313055258160910347050755783009676184731491550704169867384251840277084026600000599780169833155915123694174754507393250392421232709915239086950002080273029470925206534299821366778013511074819719523180017436119580654844867444770866127940458498359849753710793195, 16203971490966323105378639920018158445719379021934110467328114474478026489986416283181042243627831879731772410383779908186447672466170525558666858170503108365531310636027057533479957479983777723897876681680673438403531341735528217788905140017080263110792241598942920239791324630724944501073558534640417040785297940301916186036807028196211307621395707359356496111179987755621529030627030853845617035679719180083861946257654909594, 58125958929142961985379470455811692783553213039763368492478527700312132519171893279156724386108397389440042553494866511419997511373755263218502629572425811580103899779864645366634854026192008177367682487391512337785705736375292043459202394367278105498417587006774360563808988423702992469948070963586940521111511266542697180690240099296432930094856761793415703821834387094034762889056955654435576853888229163973831831390943356931]
#print "p: ", p[0]
#print "GCD(p, M): ", GCD(M, p[0])
q = [0, 0, 5343630452008230568268677488306482298453815715879412953840794595967319063215444843619231295346972070717108079644623774236772022878761102575039871571948183899384015548303438686849107121071377705436214990992135357350, 0, 0]
real_N = multiply(reduce(add, p), reduce(add, q))
#print "real_N: ", real_N
for i in xrange(5):
network.nodes[i].one_round_BGW_phase_0(M, p[i], q[i], 2)
for computer in network.nodes:
computer.one_round_BGW_phase_1()
for computer in network.nodes:
computer.one_round_BGW_phase_2()
test_N = 0
for computer in network.nodes:
test_N = add(test_N, computer.bgw.n_j)
#print "n_j: ", computer.bgw.n_j
print test_N == real_N
test_N = mod(test_N, M)
#print "test_N: ", test_N
print test_N == real_N
real_N = mod(real_N,M)
print test_N == real_N
return
print trues
def hanna_generate_pq_test():
network = Network([])
network.generate_N()
p = sum([comp.p_i for comp in network.nodes])
print "p: ", p
print gmpy2.is_prime(p)
def hao_signing_test():
print "---------------------------------------"
print "SIGNING TEST"
print "---------------------------------------"
network = Network(range(4, 7))
network.setup()
d_sum = 0
e = 0
n = 0
for computer in network.nodes:
d_sum = add(d_sum, computer.d_i)
e = computer.e
n = computer.N
assert 2 == powmod(2,e*d_sum, n)
print "Try with 3 people."
network.sign(100)
print "\nTry with 4 people."
network.nodes[2].change_choice(True)
network.sign(200)
print "\nTry with same 4 people."
network.nodes[8].change_choice(True)
network.sign(300)
print "\nRemove one person."
network.nodes[5].change_choice(False)
network.sign(400)
print "\nAdd back in the removed person."
network.nodes[5].change_choice(True)
network.sign(500)
def hao_key_generation_test():
print "---------------------------------------"
print "SUBSET PRESIGNING TEST"
print "---------------------------------------"
network = Network(range(4, 7))
network.setup()
d_sum = 0
e = 0
n = 0
for computer in network.nodes:
d_sum = add(d_sum, computer.d_i)
e = computer.e
n = computer.N
assert 2 == powmod(2,e*d_sum, n)
def run_all_tests():
#brian_dealing_tests()
#hanna_bgw_test()
#hanna_subset_presigning_test()
#hanna_generate_pq_test()
hao_signing_test()
#hao_key_generation_test()
#hao_key_generation_test()
print "---------------------------------------"
print "DONE WITH TESTS"
print "---------------------------------------"
n=input('Enter how many parties are there, ex 8')
k=input('Set the threshold of how many parties must agree to produce a signature, ex 3')
agree = input('Indicate which parties agree, ex: [0,2,4,5]')
# Run everything!
run_all_tests()