forked from anthonysimeonov/baxter_mpnet_experiments
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
165 lines (131 loc) · 5.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
from tools.path_data_loader import load_dataset_end2end
from torch.autograd import Variable
import math
from tools.import_tool import fileImport
import time
import sys
###
from architectures import MLP, MLP_Path, Encoder, Encoder_End2End
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def get_input(i, data, targets, pc_inds, obstacles, bs):
"""
Input: i (int) - starting index for the batch
data/targets/pc_inds (numpy array) - data vectors to obtain batch from
obstacles (numpy array) - point cloud array
bs (int) - batch size
"""
if i+bs < len(data):
bi = data[i:i+bs]
bt = targets[i:i+bs]
bpc = pc_inds[i:i+bs]
bobs = obstacles[bpc]
else:
bi = data[i:]
bt = targets[i:]
bpc = pc_inds[i:]
bobs = obstacles[bpc]
return torch.from_numpy(bi), torch.from_numpy(bt), torch.from_numpy(bobs)
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
importer = fileImport()
env_data_path = args.env_data_path
path_data_path = args.path_data_path
pcd_data_path = args.pointcloud_data_path
envs = importer.environments_import(env_data_path + args.envs_file)
print("Loading obstacle data...\n")
dataset_train, targets_train, pc_inds_train, obstacles = load_dataset_end2end(
envs, path_data_path, pcd_data_path, args.path_data_file, importer, NP=1000)
print("Loaded dataset, targets, and pontcloud obstacle vectors: ")
print(str(len(dataset_train)) + " " +
str(len(targets_train)) + " " + str(len(pc_inds_train)))
print("\n")
if not os.path.exists(args.trained_model_path):
os.makedirs(args.trained_model_path)
# Build the models
mlp = MLP(args.mlp_input_size, args.mlp_output_size)
encoder = Encoder(args.enc_input_size, args.enc_output_size)
if torch.cuda.is_available():
encoder.cuda()
mlp.cuda()
# Loss and Optimizer
criterion = nn.MSELoss()
params = list(encoder.parameters())+list(mlp.parameters())
optimizer = torch.optim.Adagrad(params, lr=args.learning_rate)
total_loss = []
epoch = 1
sm = 90 # start saving models after 100 epochs
print("Starting epochs...\n")
# epoch=1
done = False
for epoch in range(args.num_epochs):
# while (not done)
start = time.time()
print("epoch" + str(epoch))
avg_loss = 0
for i in range(0, len(dataset_train), args.batch_size):
# Forward, Backward and Optimize
# zero gradients
encoder.zero_grad()
mlp.zero_grad()
# convert to pytorch tensors and Varialbes
bi, bt, bobs = get_input(
i, dataset_train, targets_train, pc_inds_train, obstacles, args.batch_size)
bi = to_var(bi)
bt = to_var(bt)
bobs = to_var(bobs)
# forward pass through encoder
h = encoder(bobs)
# concatenate encoder output with dataset input
inp = torch.cat((bi, h), dim=1)
# forward pass through mlp
bo = mlp(inp)
# compute overall loss and backprop all the way
loss = criterion(bo, bt)
avg_loss = avg_loss+loss.data
loss.backward()
optimizer.step()
print("--average loss:")
print(avg_loss/(len(dataset_train)/args.batch_size))
total_loss.append(avg_loss/(len(dataset_train)/args.batch_size))
# Save the models
if epoch == sm:
print("\nSaving model\n")
print("time: " + str(time.time() - start))
torch.save(encoder.state_dict(), os.path.join(
args.trained_model_path, 'cae_encoder_'+str(epoch)+'.pkl'))
torch.save(total_loss, 'total_loss_'+str(epoch)+'.dat')
model_path = 'mlp_PReLU_ae_dd'+str(epoch)+'.pkl'
torch.save(mlp.state_dict(), os.path.join(
args.trained_model_path, model_path))
if (epoch != 1):
sm = sm+10 # save model after every 50 epochs from 100 epoch ownwards
torch.save(total_loss, 'total_loss.dat')
model_path = 'mlp_PReLU_ae_dd_final.pkl'
torch.save(mlp.state_dict(), os.path.join(args.trained_model_path, model_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--env_data_path', type=str, default='./env/environment_data/')
parser.add_argument('--path_data_path', type=str, default='./data/train/paths/')
parser.add_argument('--pointcloud_data_path', type=str, default='./data/train/pcd/')
parser.add_argument('--trained_model_path', type=str, default='./models/sample_train/', help='path for saving trained models')
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--num_epochs', type=int, default=200)
parser.add_argument('--enc_input_size', type=int, default=16053)
parser.add_argument('--enc_output_size', type=int, default=60)
parser.add_argument('--mlp_input_size', type=int, default=74)
parser.add_argument('--mlp_output_size', type=int, default=7)
parser.add_argument('--envs_file', type=str, default='trainEnvironments.pkl')
parser.add_argument('--path_data_file', type=str, default='trainPaths.pkl')
args = parser.parse_args()
main(args)