modeling
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
* Required libraries: - pyRosetta3 - Rosetta - gnu parallel - Python libraries: [scipy, numpy] - tensorflow setup IN CPU for running DeepAccNet * How to configure: Please edit your setup.sh file to specify the paths where library installations exist. Note that all DeepAccNet runs in CPUs in the refinement process -- please make sure tensorflow also works in CPU. * Preprocessing/Required inputs: - t000_.3mers & t000_.9mers : Rosetta fragment library files, for 3mer/9mer libraries, respectively - init.pdb : Starting model as pdb format - init.npz : DeepAccNet prediction on init.pdb * How to run: 1. Setup environment > source $SCRIPTPATH/setup.sh 2. Prepare a directory containing [t000_.3mers, t000_.9mers, init.pdb, init.npz] 3. Run initial model diversification at a directory 'idiv': > python $SCRIPTPATH/MainDiversification.py idiv init.npz (will take a few hours using 60 cores) 4. Run iterative intensification at a directory 'ihyb.a' (aggressive mode as default): > python $SCRIPTPATH/MainIteration.py idiv/pick.Q.out init.npz ihyb.a (will take a few hours using 60 cores) 4-1. Optionally, run a "conservaative-mode" iterative intensification separately at a directory 'ihyb.c' > python $SCRIPTPATH/MainIteration.py idiv/pick.Q.out init.npz ihyb.c -opt cR2D (will take a few hours using 60 cores) 5. Post-process the iteration results to get a representative model (takes 5~10 minutes in a single core) > python $SCRIPTPATH/PostProcess.py [ihyb.a/ihyb.c] The final model will be 'Qsel.avrg.relaxed.pdb'!