-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathutils.py
348 lines (295 loc) · 13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import json
import logging
import os
import shutil
import torch
import csv
import numpy as np
from tqdm import tqdm
import pandas as pd
import scipy
import matplotlib
matplotlib.use('Agg')
#matplotlib.rcParams['savefig.dpi'] = 300 #Uncomment for higher plot resolutions
import matplotlib.pyplot as plt
from IPython import embed
import seaborn as sns
import model.gan_transformer as transformer
logger = logging.getLogger('Transformer.Utils')
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model):
try:
score = -val_loss
except:
embed()
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), 'checkpoint.pt')
self.val_loss_min = val_loss
class Params:
'''Class that loads hyperparameters from a json file.
Example:
params = Params(json_path)
print(params.learning_rate)
params.learning_rate = 0.5 # change the value of learning_rate in params
'''
def __init__(self, json_path):
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
def save(self, json_path):
with open(json_path, 'w') as f:
json.dump(self.__dict__, f, indent=4, ensure_ascii=False)
def update(self, json_path):
'''Loads parameters from json file'''
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
@property
def dict(self):
'''Gives dict-like access to Params instance by params.dict['learning_rate']'''
return self.__dict__
class RunningAverage:
'''A simple class that maintains the running average of a quantity
Example:
loss_avg = RunningAverage()
loss_avg.update(2)
loss_avg.update(4)
loss_avg() = 3
'''
def __init__(self):
self.steps = 0
self.total = 0
def update(self, val):
self.total += val
self.steps += 1
def __call__(self):
return self.total / float(self.steps)
def set_logger(log_path):
'''Set the logger to log info in terminal and file `log_path`.
In general, it is useful to have a logger so that every output to the terminal is saved
in a permanent file. Here we save it to `model_dir/train.log`.
Example:
logging.info('Starting training...')
Args:
log_path: (string) where to log
'''
_logger = logging.getLogger('Transformer')
_logger.setLevel(logging.INFO)
fmt = logging.Formatter('[%(asctime)s] %(name)s: %(message)s', '%H:%M:%S')
class TqdmHandler(logging.StreamHandler):
def __init__(self, formatter):
logging.StreamHandler.__init__(self)
self.setFormatter(formatter)
def emit(self, record):
msg = self.format(record)
tqdm.write(msg)
file_handler = logging.FileHandler(log_path)
file_handler.setFormatter(fmt)
_logger.addHandler(file_handler)
_logger.addHandler(TqdmHandler(fmt))
def save_dict_to_json(d, json_path):
'''Saves dict of floats in json file
Args:
d: (dict) of float-castable values (np.float, int, float, etc.)
json_path: (string) path to json file
'''
with open(json_path, 'w') as f:
# We need to convert the values to float for json (it doesn't accept np.array, np.float, )
d = {k: float(v) for k, v in d.items()}
json.dump(d, f, indent=4)
def save_prediction(prediction, path):
index = prediction[:,0]
result = pd.DataFrame(prediction[:,1], index=index)
result.to_csv(path)
def save_checkpoint(state, is_best, epoch, checkpoint, ins_name=-1):
'''Saves model and training parameters at checkpoint + 'last.pth.tar'. If is_best==True, also saves
checkpoint + 'best.pth.tar'
Args:
state: (dict) contains model's state_dict, may contain other keys such as epoch, optimizer state_dict
is_best: (bool) True if it is the best model seen till now
checkpoint: (string) folder where parameters are to be saved
ins_name: (int) instance index
'''
if ins_name == -1:
filepath = os.path.join(checkpoint, f'epoch_{epoch}.pth.tar')
else:
filepath = os.path.join(checkpoint, f'epoch_{epoch}_ins_{ins_name}.pth.tar')
if not os.path.exists(checkpoint):
logger.info(f'Checkpoint Directory does not exist! Making directory {checkpoint}')
os.mkdir(checkpoint)
torch.save(state, filepath)
logger.info(f'Checkpoint saved to {filepath}')
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'best.pth.tar'))
logger.info('Best checkpoint copied to best.pth.tar')
def load_checkpoint(checkpoint, model, optimizer=None):
'''Loads model parameters (state_dict) from file_path. If optimizer is provided, loads state_dict of
optimizer assuming it is present in checkpoint.
Args:
checkpoint: (string) filename which needs to be loaded
model: (torch.nn.Module) model for which the parameters are loaded
optimizer: (torch.optim) optional: resume optimizer from checkpoint
gpu: which gpu to use
'''
if not os.path.exists(checkpoint):
raise FileNotFoundError(f"File doesn't exist {checkpoint}")
if torch.cuda.is_available():
checkpoint = torch.load(checkpoint, map_location='cuda')
else:
checkpoint = torch.load(checkpoint, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'])
if optimizer:
optimizer.load_state_dict(checkpoint['optim_dict'])
return checkpoint
def plot_all_epoch(variable, save_name, location='./figures/'):
num_samples = variable.shape[0]
x = np.arange(start=1, stop=num_samples + 1)
f = plt.figure()
plt.plot(x, variable[:num_samples])
f.savefig(os.path.join(location, save_name + '_summary.png'))
plt.close()
def save_loss(variable, save_name, location='./loss/'):
#num_samples = variable.shape[0]
path = os.path.join(location, save_name+'.csv')
np.savetxt(path, variable, delimiter=',')
def plot_attn(attn, t, save_name, location='./figures/'):
at = attn.detach().cpu().numpy()
for i in range(at.shape[1]): # h head
#ax = sns.heatmap(at[-1][i], vmin=0, vmax=0.1, xticklabels=False, yticklabels=False)
ax = sns.heatmap(at[-1][i], xticklabels=False, yticklabels=False)
f = ax.get_figure()
f.savefig(os.path.join(location, str(t) + save_name + str(i)+ '-th_head_attention.png'))
f.clf()
def JS_div(p ,q):
M = (p+q)/2
JS = 0.5*scipy.stats.entropy(p,M) + 0.5*scipy.stats.entropy(q,M)
return JS
def count_num(attn_score):
div = np.zeros((10))
#v = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ,0.20, 0.4, 0.6, 0.8, 1.0]
v = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8, 0.9, 1.0]
for i in range(len(v)):
flag1 = attn_score <= v[i]
if i>0:
flag2 = attn_score > (v[i-1])
else:
flag2 = attn_score > 0
div[i] = np.sum(np.array(flag1&flag2))
return div, v
def plot_prediction():
history = np.load("labels.npy")
t_res = np.load("T_prediction.npy")
st_res = np.load("ST_prediction.npy")
at_res = np.load("AT_prediction.npy")
his = history[4]
t_re = t_res[4]
st_re = st_res[4]
at_re = at_res[4]
x = np.arange(his.shape[0])
embed()
plt.figure()
plt.xlim(0, 200)
plt.ylim(1000, 4500)
plt.vlines(168,1000,4500, color="green", linestyle='--')
plt.plot(x, his, color='blue')
plt.plot(x[168:], st_re, color='red', linestyle='--')
plt.savefig(fname="prediction_ST.pdf")
def report_num(output, index, name):
path = './attn'
if not os.path.isdir(path):
os.makedirs(path)
save_path = os.path.join(path, str(name).split('/')[-1] +'_attn_number.csv')
data = pd.DataFrame(output, columns=index)
data.to_csv(save_path)
def init_metrics(sample=True):
metrics = {
'ND': np.zeros(2), # numerator, denominator
'RMSE': np.zeros(3), # numerator, denominator, time step count
'test_loss': np.zeros(2),
'Q50': np.zeros(2),
'Q90': np.zeros(2),
'q50': np.zeros(2),
'q90': np.zeros(2),
'MAPE':np.zeros(1)
}
if sample:
metrics['rou90'] = np.zeros(2)
metrics['rou50'] = np.zeros(2)
return metrics
def get_metrics(sample_mu, labels, predict_start, samples=None, relative=False):
metric = dict()
metric['ND'] = transformer.accuracy_ND_(sample_mu, labels[:, predict_start:], relative=relative)
metric['RMSE'] = transformer.accuracy_RMSE_(sample_mu, labels[:, predict_start:], relative=relative)
metric['Q90'] = transformer.accuracy_ROU_(0.9, sample_mu, labels[:,predict_start:], relative=relative)
metric['Q50'] = transformer.accuracy_ROU_(0.5, sample_mu, labels[:, predict_start:], relative=relative)
#metric['q50'] = transformer.quantile_loss(0.5, sample_mu, labels[:, predict_start:])
#metric['q90'] = transformer.quantile_loss(0.9, sample_mu, labels[:, predict_start:])
if samples is not None:
metric['rou90'] = transformer.accuracy_ROU_(0.9, samples, labels[:, predict_start:], relative=relative)
metric['rou50'] = transformer.accuracy_ROU_(0.5, samples, labels[:, predict_start:], relative=relative)
return metric
def update_metrics(raw_metrics, sample_mu, labels, predict_start, samples=None, relative=False): # the original update!!!!!
raw_metrics['ND'] = raw_metrics['ND'] + transformer.accuracy_ND(sample_mu, labels[:, predict_start:], relative=relative)
raw_metrics['RMSE'] = raw_metrics['RMSE'] + transformer.accuracy_RMSE(sample_mu, labels[:, predict_start:], relative=relative)
input_time_steps = sample_mu.numel()
raw_metrics['test_loss'] = raw_metrics['test_loss'] + [
transformer.loss_quantile(sample_mu,labels, 0.5) * input_time_steps, input_time_steps]
raw_metrics['Q90'] = raw_metrics['Q90'] + transformer.accuracy_ROU(0.9, sample_mu, labels[:, predict_start:], relative=relative)
raw_metrics['Q50'] = raw_metrics['Q50'] + transformer.accuracy_ROU(0.5, sample_mu, labels[:, predict_start:], relative=relative)
#raw_metrics['q50'] = raw_metrics['q50'] + transformer.quantile_loss(0.5, sample_mu, labels[:, predict_start:])
#raw_metrics['q90'] = raw_metrics['q90'] + transformer.quantile_loss(0.9, sample_mu, labels[:, predict_start:])
if samples is not None:
raw_metrics['rou90'] = raw_metrics['rou90'] + transformer.accuracy_ROU(0.9, samples, labels[:, predict_start:], relative=relative)
raw_metrics['rou50'] = raw_metrics['rou50'] + transformer.accuracy_ROU(0.5, samples, labels[:, predict_start:], relative=relative)
return raw_metrics
def final_metrics(raw_metrics, sampling=False):
summary_metric = {}
summary_metric['ND'] = raw_metrics['ND'][0] / raw_metrics['ND'][1]
summary_metric['RMSE'] = np.sqrt(raw_metrics['RMSE'][0] / raw_metrics['RMSE'][2]) / (
raw_metrics['RMSE'][1] / raw_metrics['RMSE'][2])
summary_metric['test_loss'] = (raw_metrics['test_loss'][0] / raw_metrics['test_loss'][1]).item()
summary_metric['Q90'] = (raw_metrics['Q90'][0] / raw_metrics['Q90'][1])
summary_metric['Q50'] = (raw_metrics['Q50'][0] / raw_metrics['Q50'][1])
summary_metric['q50'] = raw_metrics['q50']
summary_metric['q90'] = raw_metrics['q90']
if sampling:
summary_metric['rou90'] = raw_metrics['rou90'][0] / raw_metrics['rou90'][1]
summary_metric['rou50'] = raw_metrics['rou50'][0] / raw_metrics['rou50'][1]
return summary_metric
def tSNE(model):
for name, params in model.named_parameters():
if isinstance(layer[1], transformer.Generator):
embed()