-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
137 lines (90 loc) · 4.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import tensorflow as tf
import numpy as np
import data_loader as dl
class Model:
def __init__(self, train=False, fromCheckpoint=None):
self.IMG_SIZE = 40
self.NUM_LABEL = 10
self.setupModel()
self.dataset = dl.Dataset()
if (train):
self.setupTraining()
self.dataset.loadData(train='train/', test='test/', categories=['sad', 'dead', 'at', 'hash', 'conf', 'empty', 'dot', 'dollar', 'plus', 'dash'])
self.sess = tf.Session()
self.saver = tf.train.Saver()
if fromCheckpoint:
self.saver.restore(self.sess, fromCheckpoint)
else:
init = tf.global_variables_initializer()
self.sess.run(init)
def setupModel(self):
# INPUT 100x100 grayscale
self.X = tf.placeholder(tf.float32, [None, self.IMG_SIZE, self.IMG_SIZE, 1])
# 3 labels [plus, minus, mult]
self.Y_ = tf.placeholder(tf.float32, [None, self.NUM_LABEL])
# dropout
self.pkeep = tf.placeholder(tf.float32);
###
### WEIGHTS
###
W0 = tf.Variable(tf.truncated_normal([6, 6, 1, 6] ,stddev=0.1))
B0 = tf.Variable(tf.ones([6]) / 10)
W1 = tf.Variable(tf.truncated_normal([5, 5, 6, 12] ,stddev=0.1))
B1 = tf.Variable(tf.ones([12]) / 10)
W2 = tf.Variable(tf.truncated_normal([4, 4, 12, 24] ,stddev=0.1))
B2 = tf.Variable(tf.ones([24]) / 10)
W3 = tf.Variable(tf.truncated_normal([(self.IMG_SIZE / 4) * (self.IMG_SIZE / 4) * 24, 200] ,stddev=0.1))
B3 = tf.Variable(tf.ones([200]) / 10)
W4 = tf.Variable(tf.truncated_normal([200, self.NUM_LABEL] ,stddev=0.1))
B4 = tf.Variable(tf.ones([self.NUM_LABEL]) / 10)
###
### LAYERS
###
# 100x100 input image
Y0 = tf.nn.conv2d(self.X, W0, strides=[1,1,1,1], padding='SAME');
Y0d = tf.nn.relu(Y0 + B0);
# 100x100 layer
Y1 = tf.nn.conv2d(Y0d, W1, strides=[1,2,2,1], padding='SAME');
Y1d = tf.nn.relu(Y1 + B1);
# 50x50 layer
Y2 = tf.nn.conv2d(Y1d, W2, strides=[1,2,2,1], padding='SAME');
Y2d = tf.nn.relu(Y2 + B2);
# 25x25
Y3 = tf.matmul(tf.reshape(Y2d, [-1, (self.IMG_SIZE / 4) * (self.IMG_SIZE / 4) * 24]), W3)
Y3d = tf.nn.relu(Y3 + B3)
Y3dd = tf.nn.dropout(Y3d, self.pkeep)
# Fully connected + Dropout
self.YLogits = tf.matmul(Y3dd, W4) + B4
self.Y = tf.nn.softmax(self.YLogits)
def setupTraining(self):
self.cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.YLogits, labels=self.Y_)
self.cross_entropy = tf.reduce_mean(self.cross_entropy) * 100
correct = tf.equal(tf.argmax(self.Y, 1), tf.argmax(self.Y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
self.training_rate = tf.placeholder(tf.float32);
self.tr_max = 0.005
self.tr_min = 0.0001
self.train_step = tf.train.AdamOptimizer(self.training_rate).minimize(self.cross_entropy)
def run_training(self, iterations, checkpointFolder='checkpoints', ident=0):
for i in range(iterations+1):
self.run_training_step(i, checkpointFolder, ident)
def run_training_step(self, i, checkpointFolder, ident):
if i % 10 == 0:
# evaluate
acc, loss = self.sess.run([self.accuracy, self.cross_entropy], feed_dict={self.X: self.dataset.test_images, self.Y_: self.dataset.test_labels, self.pkeep: 1})
print('Step: ' + str(i) + '\tAccuracy: ' + str(acc) + '\tLoss: ' + str(loss))
else:
print('Step: ' + str(i))
batch_x, batch_y = self.dataset.getTrainBatch(200)
# train
tr = self.tr_min + (self.tr_max - self.tr_min) * (np.exp(-i / 2000))
self.sess.run(self.train_step, feed_dict={self.X: batch_x, self.Y_: batch_y, self.training_rate: tr, self.pkeep: 0.75})
# Save
if (i % 50 == 0):
path = checkpointFolder + '/model_' + str(ident) + '_['+ str(i) + '].ckpt'
p = self.saver.save(self.sess, path)
print('Checkpoint saved ['+p+']')
def run_predict(self, images):
self.dataset.loadUnknown(images)
Y = self.sess.run([self.Y], feed_dict={self.X: self.dataset.unknown_images, self.pkeep: 1})
return Y;