forked from irom-princeton/dppo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
diffusion.py
362 lines (323 loc) · 12.5 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
Gaussian diffusion with DDPM and optionally DDIM sampling.
References:
Diffuser: https://github.com/jannerm/diffuser
Diffusion Policy: https://github.com/columbia-ai-robotics/diffusion_policy/blob/main/diffusion_policy/policy/diffusion_unet_lowdim_policy.py
Annotated DDIM/DDPM: https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddpm.html
"""
import logging
import torch
from torch import nn
import torch.nn.functional as F
log = logging.getLogger(__name__)
from model.diffusion.sampling import (
extract,
cosine_beta_schedule,
make_timesteps,
)
from collections import namedtuple
Sample = namedtuple("Sample", "trajectories chains")
class DiffusionModel(nn.Module):
def __init__(
self,
network,
horizon_steps,
obs_dim,
action_dim,
network_path=None,
device="cuda:0",
# Various clipping
denoised_clip_value=1.0,
randn_clip_value=10,
final_action_clip_value=None,
eps_clip_value=None, # DDIM only
# DDPM parameters
denoising_steps=100,
predict_epsilon=True,
# DDIM sampling
use_ddim=False,
ddim_discretize="uniform",
ddim_steps=None,
**kwargs,
):
super().__init__()
self.device = device
self.horizon_steps = horizon_steps
self.obs_dim = obs_dim
self.action_dim = action_dim
self.denoising_steps = int(denoising_steps)
self.predict_epsilon = predict_epsilon
self.use_ddim = use_ddim
self.ddim_steps = ddim_steps
# Clip noise value at each denoising step
self.denoised_clip_value = denoised_clip_value
# Whether to clamp the final sampled action between [-1, 1]
self.final_action_clip_value = final_action_clip_value
# For each denoising step, we clip sampled randn (from standard deviation) such that the sampled action is not too far away from mean
self.randn_clip_value = randn_clip_value
# Clip epsilon for numerical stability
self.eps_clip_value = eps_clip_value
# Set up models
self.network = network.to(device)
if network_path is not None:
checkpoint = torch.load(
network_path, map_location=device, weights_only=True
)
if "ema" in checkpoint:
self.load_state_dict(checkpoint["ema"], strict=False)
logging.info("Loaded SL-trained policy from %s", network_path)
else:
self.load_state_dict(checkpoint["model"], strict=False)
logging.info("Loaded RL-trained policy from %s", network_path)
logging.info(
f"Number of network parameters: {sum(p.numel() for p in self.parameters())}"
)
"""
DDPM parameters
"""
"""
βₜ
"""
self.betas = cosine_beta_schedule(denoising_steps).to(device)
"""
αₜ = 1 - βₜ
"""
self.alphas = 1.0 - self.betas
"""
α̅ₜ= ∏ᵗₛ₌₁ αₛ
"""
self.alphas_cumprod = torch.cumprod(self.alphas, axis=0)
"""
α̅ₜ₋₁
"""
self.alphas_cumprod_prev = torch.cat(
[torch.ones(1).to(device), self.alphas_cumprod[:-1]]
)
"""
√ α̅ₜ
"""
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
"""
√ 1-α̅ₜ
"""
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - self.alphas_cumprod)
"""
√ 1\α̅ₜ
"""
self.sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod)
"""
√ 1\α̅ₜ-1
"""
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod - 1)
"""
β̃ₜ = σₜ² = βₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)
"""
self.ddpm_var = (
self.betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.ddpm_logvar_clipped = torch.log(torch.clamp(self.ddpm_var, min=1e-20))
"""
μₜ = β̃ₜ √ α̅ₜ₋₁/(1-α̅ₜ)x₀ + √ αₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)xₜ
"""
self.ddpm_mu_coef1 = (
self.betas
* torch.sqrt(self.alphas_cumprod_prev)
/ (1.0 - self.alphas_cumprod)
)
self.ddpm_mu_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* torch.sqrt(self.alphas)
/ (1.0 - self.alphas_cumprod)
)
"""
DDIM parameters
In DDIM paper https://arxiv.org/pdf/2010.02502, alpha is alpha_cumprod in DDPM https://arxiv.org/pdf/2102.09672
"""
if use_ddim:
assert predict_epsilon, "DDIM requires predicting epsilon for now."
if ddim_discretize == "uniform": # use the HF "leading" style
step_ratio = self.denoising_steps // ddim_steps
self.ddim_t = (
torch.arange(0, ddim_steps, device=self.device) * step_ratio
)
else:
raise "Unknown discretization method for DDIM."
self.ddim_alphas = (
self.alphas_cumprod[self.ddim_t].clone().to(torch.float32)
)
self.ddim_alphas_sqrt = torch.sqrt(self.ddim_alphas)
self.ddim_alphas_prev = torch.cat(
[
torch.tensor([1.0]).to(torch.float32).to(self.device),
self.alphas_cumprod[self.ddim_t[:-1]],
]
)
self.ddim_sqrt_one_minus_alphas = (1.0 - self.ddim_alphas) ** 0.5
# Initialize fixed sigmas for inference - eta=0
ddim_eta = 0
self.ddim_sigmas = (
ddim_eta
* (
(1 - self.ddim_alphas_prev)
/ (1 - self.ddim_alphas)
* (1 - self.ddim_alphas / self.ddim_alphas_prev)
)
** 0.5
)
# Flip all
self.ddim_t = torch.flip(self.ddim_t, [0])
self.ddim_alphas = torch.flip(self.ddim_alphas, [0])
self.ddim_alphas_sqrt = torch.flip(self.ddim_alphas_sqrt, [0])
self.ddim_alphas_prev = torch.flip(self.ddim_alphas_prev, [0])
self.ddim_sqrt_one_minus_alphas = torch.flip(
self.ddim_sqrt_one_minus_alphas, [0]
)
self.ddim_sigmas = torch.flip(self.ddim_sigmas, [0])
# ---------- Sampling ----------#
def p_mean_var(self, x, t, cond, index=None, network_override=None):
if network_override is not None:
noise = network_override(x, t, cond=cond)
else:
noise = self.network(x, t, cond=cond)
# Predict x_0
if self.predict_epsilon:
if self.use_ddim:
"""
x₀ = (xₜ - √ (1-αₜ) ε )/ √ αₜ
"""
alpha = extract(self.ddim_alphas, index, x.shape)
alpha_prev = extract(self.ddim_alphas_prev, index, x.shape)
sqrt_one_minus_alpha = extract(
self.ddim_sqrt_one_minus_alphas, index, x.shape
)
x_recon = (x - sqrt_one_minus_alpha * noise) / (alpha**0.5)
else:
"""
x₀ = √ 1\α̅ₜ xₜ - √ 1\α̅ₜ-1 ε
"""
x_recon = (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipm1_alphas_cumprod, t, x.shape) * noise
)
else: # directly predicting x₀
x_recon = noise
if self.denoised_clip_value is not None:
x_recon.clamp_(-self.denoised_clip_value, self.denoised_clip_value)
if self.use_ddim:
# re-calculate noise based on clamped x_recon - default to false in HF, but let's use it here
noise = (x - alpha ** (0.5) * x_recon) / sqrt_one_minus_alpha
# Clip epsilon for numerical stability in policy gradient - not sure if this is helpful yet, but the value can be huge sometimes. This has no effect if DDPM is used
if self.use_ddim and self.eps_clip_value is not None:
noise.clamp_(-self.eps_clip_value, self.eps_clip_value)
# Get mu
if self.use_ddim:
"""
μ = √ αₜ₋₁ x₀ + √(1-αₜ₋₁ - σₜ²) ε
eta=0
"""
sigma = extract(self.ddim_sigmas, index, x.shape)
dir_xt = (1.0 - alpha_prev - sigma**2).sqrt() * noise
mu = (alpha_prev**0.5) * x_recon + dir_xt
var = sigma**2
logvar = torch.log(var)
else:
"""
μₜ = β̃ₜ √ α̅ₜ₋₁/(1-α̅ₜ)x₀ + √ αₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)xₜ
"""
mu = (
extract(self.ddpm_mu_coef1, t, x.shape) * x_recon
+ extract(self.ddpm_mu_coef2, t, x.shape) * x
)
logvar = extract(self.ddpm_logvar_clipped, t, x.shape)
return mu, logvar
@torch.no_grad()
def forward(self, cond, deterministic=True):
"""
Forward pass for sampling actions. Used in evaluating pre-trained/fine-tuned policy. Not modifying diffusion clipping
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
Return:
Sample: namedtuple with fields:
trajectories: (B, Ta, Da)
"""
device = self.betas.device
sample_data = cond["state"] if "state" in cond else cond["rgb"]
B = len(sample_data)
# Loop
x = torch.randn((B, self.horizon_steps, self.action_dim), device=device)
if self.use_ddim:
t_all = self.ddim_t
else:
t_all = list(reversed(range(self.denoising_steps)))
for i, t in enumerate(t_all):
t_b = make_timesteps(B, t, device)
index_b = make_timesteps(B, i, device)
mean, logvar = self.p_mean_var(
x=x,
t=t_b,
cond=cond,
index=index_b,
)
std = torch.exp(0.5 * logvar)
# Determine noise level
if self.use_ddim:
std = torch.zeros_like(std)
else:
if t == 0:
std = torch.zeros_like(std)
else:
std = torch.clip(std, min=1e-3)
noise = torch.randn_like(x).clamp_(
-self.randn_clip_value, self.randn_clip_value
)
x = mean + std * noise
# clamp action at final step
if self.final_action_clip_value is not None and i == len(t_all) - 1:
x = torch.clamp(
x, -self.final_action_clip_value, self.final_action_clip_value
)
return Sample(x, None)
# ---------- Supervised training ----------#
def loss(self, x, *args):
batch_size = len(x)
t = torch.randint(
0, self.denoising_steps, (batch_size,), device=x.device
).long()
return self.p_losses(x, *args, t)
def p_losses(
self,
x_start,
cond: dict,
t,
):
"""
If predicting epsilon: E_{t, x0, ε} [||ε - ε_θ(√α̅ₜx0 + √(1-α̅ₜ)ε, t)||²
Args:
x_start: (batch_size, horizon_steps, action_dim)
cond: dict with keys as step and value as observation
t: batch of integers
"""
device = x_start.device
# Forward process
noise = torch.randn_like(x_start, device=device)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
# Predict
x_recon = self.network(x_noisy, t, cond=cond)
if self.predict_epsilon:
return F.mse_loss(x_recon, noise, reduction="mean")
else:
return F.mse_loss(x_recon, x_start, reduction="mean")
def q_sample(self, x_start, t, noise=None):
"""
q(xₜ | x₀) = 𝒩(xₜ; √ α̅ₜ x₀, (1-α̅ₜ)I)
xₜ = √ α̅ₜ xₒ + √ (1-α̅ₜ) ε
"""
if noise is None:
device = x_start.device
noise = torch.randn_like(x_start, device=device)
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)