-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathsynthesizer.py
404 lines (307 loc) · 16.1 KB
/
synthesizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# coding: utf-8
"""
python synthesizer.py --load_path logdir-tacotron/moon+son_2018-12-25_19-03-21 --num_speakers 2 --speaker_id 0 --text "오스트랄로피테쿠스 아파렌시스는 멸종된 사람족 종으로, 현재에는 뼈 화석이 발견되어 있다."
"""
import io
import os
import re
import librosa
import argparse
import numpy as np
from glob import glob
from tqdm import tqdm
import tensorflow as tf
from functools import partial
from hparams import hparams
from tacotron import create_model, get_most_recent_checkpoint
from utils.audio import save_wav, inv_linear_spectrogram, inv_preemphasis, inv_spectrogram_tensorflow
from utils import plot, PARAMS_NAME, load_json, load_hparams, add_prefix, add_postfix, get_time, parallel_run, makedirs, str2bool
from text.korean import tokenize
from text import text_to_sequence, sequence_to_text
from datasets.datafeeder_tacotron import _prepare_inputs
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
tf.logging.set_verbosity(tf.logging.ERROR)
class Synthesizer(object):
def close(self):
tf.reset_default_graph()
self.sess.close()
def load(self, checkpoint_path, num_speakers=2, checkpoint_step=None, model_name='tacotron'):
self.num_speakers = num_speakers
if os.path.isdir(checkpoint_path):
load_path = checkpoint_path
checkpoint_path = get_most_recent_checkpoint(checkpoint_path, checkpoint_step)
else:
load_path = os.path.dirname(checkpoint_path)
print('Constructing model: %s' % model_name)
inputs = tf.placeholder(tf.int32, [None, None], 'inputs')
input_lengths = tf.placeholder(tf.int32, [None], 'input_lengths')
batch_size = tf.shape(inputs)[0]
speaker_id = tf.placeholder_with_default(
tf.zeros([batch_size], dtype=tf.int32), [None], 'speaker_id')
load_hparams(hparams, load_path)
with tf.variable_scope('model') as scope:
self.model = create_model(hparams)
self.model.initialize(inputs, input_lengths, self.num_speakers, speaker_id,rnn_decoder_test_mode=True)
self.wav_output = inv_spectrogram_tensorflow(self.model.linear_outputs,hparams)
print('Loading checkpoint: %s' % checkpoint_path)
sess_config = tf.ConfigProto(
allow_soft_placement=True,
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=2)
sess_config.gpu_options.allow_growth = True
self.sess = tf.Session(config=sess_config)
self.sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(self.sess, checkpoint_path)
def synthesize(self,
texts=None, tokens=None,
base_path=None, paths=None, speaker_ids=None,
start_of_sentence=None, end_of_sentence=True,
pre_word_num=0, post_word_num=0,
pre_surplus_idx=0, post_surplus_idx=1,
use_short_concat=False,
manual_attention_mode=0,
base_alignment_path=None,
librosa_trim=False,
attention_trim=True,
isKorean=True):
# manual_attention_mode가 on되면, manual attention 적용하지 않음 버전과 적용한 버전해서, 2개가 만들어 진다.
# Possible inputs:
# 1) text=text
# 2) text=texts
# 3) tokens=tokens, texts=texts # use texts as guide
if type(texts) == str:
texts = [texts]
if texts is not None and tokens is None:
sequences = np.array([text_to_sequence(text) for text in texts])
sequences = _prepare_inputs(sequences)
elif tokens is not None:
sequences = tokens
#sequences = np.pad(sequences,[(0,0),(0,5)],'constant',constant_values=(0)) # case by case ---> overfitting?
if paths is None:
paths = [None] * len(sequences)
if texts is None:
texts = [None] * len(sequences)
time_str = get_time()
def plot_and_save_parallel(wavs, alignments, use_manual_attention,mels):
items = list(enumerate(zip(wavs, alignments, paths, texts, sequences,mels)))
fn = partial(
plot_graph_and_save_audio,
base_path=base_path,
start_of_sentence=start_of_sentence, end_of_sentence=end_of_sentence,
pre_word_num=pre_word_num, post_word_num=post_word_num,
pre_surplus_idx=pre_surplus_idx, post_surplus_idx=post_surplus_idx,
use_short_concat=use_short_concat,
use_manual_attention=use_manual_attention,
librosa_trim=librosa_trim,
attention_trim=attention_trim,
time_str=time_str,
isKorean=isKorean)
return parallel_run(fn, items,desc="plot_graph_and_save_audio", parallel=False)
#input_lengths = np.argmax(np.array(sequences) == 1, 1)+1
input_lengths = [np.argmax(a==1)+1 for a in sequences]
fetches = [
#self.wav_output,
self.model.linear_outputs,
self.model.alignments, # # batch_size, text length(encoder), target length(decoder)
self.model.mel_outputs,
]
feed_dict = { self.model.inputs: sequences, self.model.input_lengths: input_lengths, }
if base_alignment_path is None:
feed_dict.update({self.model.manual_alignments: np.zeros([1, 1, 1]), self.model.is_manual_attention: False, })
else:
manual_alignments = []
#alignment_path = os.path.join(base_alignment_path,os.path.basename(base_path))
alignment_path = os.path.join(os.path.basename(base_path),base_alignment_path)
for idx in range(len(sequences)):
numpy_path = "{}{}.npy".format(alignment_path, idx)
manual_alignments.append(np.load(numpy_path))
alignments_T = np.transpose(manual_alignments, [0, 2, 1])
feed_dict.update({self.model.manual_alignments: alignments_T, self.model.is_manual_attention: True})
if speaker_ids is not None:
if type(speaker_ids) == dict:
speaker_embed_table = sess.run(
self.model.speaker_embed_table)
speaker_embed = [speaker_ids[speaker_id] * speaker_embed_table[speaker_id] for speaker_id in speaker_ids]
feed_dict.update({ self.model.speaker_embed_table: np.tile() })
else:
feed_dict[self.model.speaker_id] = speaker_ids
wavs, alignments,mels = self.sess.run(fetches, feed_dict=feed_dict)
results = plot_and_save_parallel(wavs, alignments, use_manual_attention = False,mels=mels) # use_manual_attention = True/False는 출력파일명에 'manual'을 넣고 빼고 차이 뿐.
if manual_attention_mode > 0:
# argmax one hot
if manual_attention_mode == 1:
alignments_T = np.transpose(alignments, [0, 2, 1]) # [batch_size, Encoder length, Decoder_length] ==> [N,D,E]. (1, 50, 200) -->((1,200,50)
new_alignments = np.zeros_like(alignments_T) # model에서 attention은 (N,D,E)이므로
for idx in range(len(alignments)): # batch에 대한 loop
argmax = alignments[idx].argmax(1) # text가 소리의 어디쯤에서 가장 영향을 많이 주었나? 즉 어디서 발음되나?
new_alignments[idx][(argmax, range(len(argmax)))] = 1 # 최대값을 가지는 위치만 1로 바꾸어주는 효과. 나머지는 모두 0
# sharpening
elif manual_attention_mode == 2:
new_alignments = np.transpose(alignments, [0, 2, 1]) # [N, E, D] ==> [N,D,E]
for idx in range(len(alignments)): # batch에 대한 loop
# 분산, 평균을 계산한 후, 사용하지도 않네... 뭐야!!!
var = np.var(new_alignments[idx], 1) # variance [N,D]. 각 Decoder time별 attention variance
mean_var = var[:input_lengths[idx]].mean()
new_alignments[idx] = np.power(new_alignments[idx], 2)
# prunning
elif manual_attention_mode == 3:
new_alignments = np.transpose(alignments, [0, 2, 1]) # [N, E, D]
for idx in range(len(alignments)):
argmax = alignments[idx].argmax(1)
new_alignments[idx][(argmax, range(len(argmax)))] = 1 # 최대값을 가지는 위치만 1로 바꾸어주는 효과. 나머지는 모두 유지
feed_dict.update({
self.model.manual_alignments: new_alignments,
self.model.is_manual_attention: True,
})
new_wavs, new_alignments = self.sess.run(fetches, feed_dict=feed_dict)
results = plot_and_save_parallel( new_wavs, new_alignments, True)
return results
def plot_graph_and_save_audio(args,
base_path=None,
start_of_sentence=None, end_of_sentence=None,
pre_word_num=0, post_word_num=0,
pre_surplus_idx=0, post_surplus_idx=1,
use_short_concat=False,
use_manual_attention=False, save_alignment=False,
librosa_trim=False, attention_trim=False,
time_str=None, isKorean=True):
idx, (wav, alignment, path, text, sequence,mel) = args
if base_path:
plot_path = "{}/{}.png".format(base_path, get_time())
elif path:
plot_path = path.rsplit('.', 1)[0] + ".png"
else:
plot_path = None
#plot_path = add_prefix(plot_path, time_str)
if use_manual_attention:
plot_path = add_postfix(plot_path, "manual")
if plot_path:
plot.plot_alignment(alignment, plot_path, text=text, isKorean=isKorean)
if use_short_concat:
wav = short_concat(
wav, alignment, text,
start_of_sentence, end_of_sentence,
pre_word_num, post_word_num,
pre_surplus_idx, post_surplus_idx)
if attention_trim and end_of_sentence:
end_idx_counter = 0
attention_argmax = alignment.argmax(0)
end_idx = min(len(sequence) - 1, max(attention_argmax))
max_counter = min((attention_argmax == end_idx).sum(), 5)
for jdx, attend_idx in enumerate(attention_argmax):
if len(attention_argmax) > jdx + 1:
if attend_idx == end_idx:
end_idx_counter += 1
if attend_idx == end_idx and attention_argmax[jdx + 1] > end_idx:
break
if end_idx_counter >= max_counter:
break
else:
break
spec_end_idx = hparams.reduction_factor * jdx + 3
wav = wav[:spec_end_idx]
mel = mel[:spec_end_idx]
audio_out = inv_linear_spectrogram(wav.T,hparams)
if librosa_trim and end_of_sentence:
yt, index = librosa.effects.trim(audio_out, frame_length=5120, hop_length=256, top_db=50)
audio_out = audio_out[:index[-1]]
mel = mel[:index[-1]//hparams.hop_size]
if save_alignment:
alignment_path = "{}/{}.npy".format(base_path, idx)
np.save(alignment_path, alignment, allow_pickle=False)
if path or base_path:
if path:
current_path = add_postfix(path, idx)
elif base_path:
current_path = plot_path.replace(".png", ".wav")
save_wav(audio_out, current_path,hparams.sample_rate)
#hccho
mel_path = current_path.replace(".wav",".npy")
np.save(mel_path,mel)
return True
else:
io_out = io.BytesIO()
save_wav(audio_out, io_out,hparams.sample_rate)
result = io_out.getvalue()
return result
def get_most_recent_checkpoint(checkpoint_dir, checkpoint_step=None):
if checkpoint_step is None:
checkpoint_paths = [path for path in glob("{}/*.ckpt-*.data-*".format(checkpoint_dir))]
idxes = [int(os.path.basename(path).split('-')[1].split('.')[0]) for path in checkpoint_paths]
max_idx = max(idxes)
else:
max_idx = checkpoint_step
lastest_checkpoint = os.path.join(checkpoint_dir, "model.ckpt-{}".format(max_idx))
print(" [*] Found lastest checkpoint: {}".format(lastest_checkpoint))
return lastest_checkpoint
def short_concat(
wav, alignment, text,
start_of_sentence, end_of_sentence,
pre_word_num, post_word_num,
pre_surplus_idx, post_surplus_idx):
# np.array(list(decomposed_text))[attention_argmax]
attention_argmax = alignment.argmax(0)
if not start_of_sentence and pre_word_num > 0:
surplus_decomposed_text = decompose_ko_text("".join(text.split()[0]))
start_idx = len(surplus_decomposed_text) + 1
for idx, attend_idx in enumerate(attention_argmax):
if attend_idx == start_idx and attention_argmax[idx - 1] < start_idx:
break
wav_start_idx = hparams.reduction_factor * idx - 1 - pre_surplus_idx
else:
wav_start_idx = 0
if not end_of_sentence and post_word_num > 0:
surplus_decomposed_text = decompose_ko_text("".join(text.split()[-1]))
end_idx = len(decomposed_text.replace(surplus_decomposed_text, '')) - 1
for idx, attend_idx in enumerate(attention_argmax):
if attend_idx == end_idx and attention_argmax[idx + 1] > end_idx:
break
wav_end_idx = hparams.reduction_factor * idx + 1 + post_surplus_idx
else:
if True: # attention based split
if end_of_sentence:
end_idx = min(len(decomposed_text) - 1, max(attention_argmax))
else:
surplus_decomposed_text = decompose_ko_text("".join(text.split()[-1]))
end_idx = len(decomposed_text.replace(surplus_decomposed_text, '')) - 1
while True:
if end_idx in attention_argmax:
break
end_idx -= 1
end_idx_counter = 0
for idx, attend_idx in enumerate(attention_argmax):
if len(attention_argmax) > idx + 1:
if attend_idx == end_idx:
end_idx_counter += 1
if attend_idx == end_idx and attention_argmax[idx + 1] > end_idx:
break
if end_idx_counter > 5:
break
else:
break
wav_end_idx = hparams.reduction_factor * idx + 1 + post_surplus_idx
else:
wav_end_idx = None
wav = wav[wav_start_idx:wav_end_idx]
if end_of_sentence:
wav = np.lib.pad(wav, ((0, 20), (0, 0)), 'constant', constant_values=0)
else:
wav = np.lib.pad(wav, ((0, 10), (0, 0)), 'constant', constant_values=0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--load_path', required=True)
parser.add_argument('--sample_path', default="logdir-tacotron/generate")
parser.add_argument('--text', required=True)
parser.add_argument('--num_speakers', default=1, type=int)
parser.add_argument('--speaker_id', default=0, type=int)
parser.add_argument('--checkpoint_step', default=None, type=int)
parser.add_argument('--is_korean', default=True, type=str2bool)
parser.add_argument('--base_alignment_path', default=None)
config = parser.parse_args()
makedirs(config.sample_path)
synthesizer = Synthesizer()
synthesizer.load(config.load_path, config.num_speakers, config.checkpoint_step)
audio = synthesizer.synthesize(texts=[config.text],base_path=config.sample_path,speaker_ids=[config.speaker_id],
attention_trim=True,base_alignment_path=config.base_alignment_path,isKorean=config.is_korean)[0]