-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhtype-decidable.agda
56 lines (52 loc) · 2.46 KB
/
htype-decidable.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
open import Nat
open import Prelude
open import dynamics-core
open import contexts
module htype-decidable where
arr-lemma : ∀{t1 t2 t3 t4} → t1 ==> t2 == t3 ==> t4 → t1 == t3 × t2 == t4
arr-lemma refl = refl , refl
sum-lemma : ∀{t1 t2 t3 t4} → t1 ⊕ t2 == t3 ⊕ t4 → t1 == t3 × t2 == t4
sum-lemma refl = refl , refl
prod-lemma : ∀{t1 t2 t3 t4} → t1 ⊠ t2 == t3 ⊠ t4 → t1 == t3 × t2 == t4
prod-lemma refl = refl , refl
htype-dec : (t1 t2 : htyp) → t1 == t2 + (t1 == t2 → ⊥)
htype-dec num num = Inl refl
htype-dec num ⦇-⦈ = Inr (λ ())
htype-dec num (t1 ==> t2) = Inr (λ ())
htype-dec num (t1 ⊕ t2) = Inr (λ ())
htype-dec ⦇-⦈ num = Inr (λ ())
htype-dec ⦇-⦈ ⦇-⦈ = Inl refl
htype-dec ⦇-⦈ (t1 ==> t2) = Inr (λ ())
htype-dec ⦇-⦈ (t1 ⊕ t2) = Inr (λ ())
htype-dec (t1 ==> t2) num = Inr (λ ())
htype-dec (t1 ==> t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ==> t2) (t3 ==> t4)
with htype-dec t1 t3 | htype-dec t2 t4
... | Inl refl | Inl refl = Inl refl
... | Inl refl | Inr x₁ = Inr (λ x → x₁ (π2 (arr-lemma x)))
... | Inr x | Inl refl = Inr (λ x₁ → x (π1 (arr-lemma x₁)))
... | Inr x | Inr x₁ = Inr (λ x₂ → x (π1 (arr-lemma x₂)))
htype-dec (t1 ==> t2) (t3 ⊕ t4) = Inr (λ ())
htype-dec (t1 ⊕ t2) num = Inr (λ ())
htype-dec (t1 ⊕ t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ⊕ t2) (t3 ==> t4) = Inr (λ ())
htype-dec (t1 ⊕ t2) (t3 ⊕ t4)
with htype-dec t1 t3 | htype-dec t2 t4
... | Inl refl | Inl refl = Inl refl
... | Inl refl | Inr x₁ = Inr (λ x → x₁ (π2 (sum-lemma x)))
... | Inr x | Inl refl = Inr (λ x₁ → x (π1 (sum-lemma x₁)))
... | Inr x | Inr x₁ = Inr (λ x₂ → x (π1 (sum-lemma x₂)))
htype-dec num (t3 ⊠ t4) = Inr (λ ())
htype-dec ⦇-⦈ (t3 ⊠ t4) = Inr (λ ())
htype-dec (t1 ==> t2) (t3 ⊠ t4) = Inr (λ ())
htype-dec (t1 ⊕ t2) (t3 ⊠ t4) = Inr (λ ())
htype-dec (t1 ⊠ t2) num = Inr (λ ())
htype-dec (t1 ⊠ t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ⊠ t2) (t3 ==> t4) = Inr (λ ())
htype-dec (t1 ⊠ t2) (t3 ⊕ t4) = Inr (λ ())
htype-dec (t1 ⊠ t2) (t3 ⊠ t4)
with htype-dec t1 t3 | htype-dec t2 t4
... | Inl refl | Inl refl = Inl refl
... | Inl refl | Inr x₁ = Inr (λ x → x₁ (π2 (prod-lemma x)))
... | Inr x | Inl refl = Inr (λ x₁ → x (π1 (prod-lemma x₁)))
... | Inr x | Inr x₁ = Inr (λ x₂ → x (π1 (prod-lemma x₂)))