-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontraction.agda
41 lines (38 loc) · 1.85 KB
/
contraction.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
open import Prelude
open import Nat
open import dynamics-core
open import contexts
open import lemmas-disjointness
module contraction where
-- in the same style as the proofs of exchange, this argument along with
-- trasnport allows you to prove contraction for all the hypothetical
-- judgements uniformly. we never explicitly use contraction anywhere, so
-- we omit any of the specific instances for concision; they are entirely
-- mechanical, as are the specific instances of exchange. one is shown
-- below as an example.
contract : {A : Set} {x : Nat} {τ : A} (Γ : A ctx) →
((Γ ,, (x , τ)) ,, (x , τ)) == (Γ ,, (x , τ))
contract {A} {x} {τ} Γ = funext guts
where
guts : (y : Nat) → (Γ ,, (x , τ) ,, (x , τ)) y == (Γ ,, (x , τ)) y
guts y with natEQ x y
guts .x | Inl refl with Γ x
guts .x | Inl refl | Some x₁ = refl
guts .x | Inl refl | None with natEQ x x
guts .x | Inl refl | None | Inl refl = refl
guts .x | Inl refl | None | Inr x≠x = abort (x≠x refl)
guts y | Inr x≠y with natEQ x y
guts y | Inr x≠y | Inl refl = abort (x≠y refl)
guts y | Inr x≠y | Inr x≠y' = refl
contract-synth : ∀{Γ x τ e τ'} →
(Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ' →
(Γ ,, (x , τ)) ⊢ e => τ'
contract-synth {Γ = Γ} {x = x} {τ = τ} {e = e} {τ' = τ'} =
tr (λ qq → qq ⊢ e => τ') (contract {x = x} {τ = τ} Γ)
-- as an aside, this also establishes the other direction which is rarely
-- mentioned, since equality is symmetric
elab-synth : ∀{Γ x τ e τ'} →
(Γ ,, (x , τ)) ⊢ e => τ' →
(Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ'
elab-synth {Γ = Γ} {x = x} {τ = τ} {e = e} {τ' = τ'} =
tr (λ qq → qq ⊢ e => τ') (! (contract {x = x} {τ = τ} Γ))