-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprelude.agda
174 lines (136 loc) · 4.67 KB
/
prelude.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
module prelude where
-- top
data ⊤ : Set where
⟨⟩ : ⊤
-- bottom
data ⊥ : Set where
⊥-elim : ∀ {A : Set} → ⊥ → A
⊥-elim ()
-- case
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
-- negation
module negation where
open import Agda.Primitive using (Level)
¬_ : ∀ {ℓ : Level} → Set ℓ → Set ℓ
¬ A = A → ⊥
-- decidability
module decidability where
open negation
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
-- equality
module eq where
open import Agda.Primitive using (Level)
open negation
infix 4 _≡_
infix 4 _≢_
data _≡_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set ℓ where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
_≢_ : ∀ {ℓ : Level} {A : Set ℓ} → A → A → Set ℓ
x ≢ y = ¬ (x ≡ y)
≡-sym : ∀ {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡ y → y ≡ x
≡-sym refl = refl
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
¬-≡ : ∀ {A : Set} → (¬a : ¬ A) → (¬a′ : ¬ A) → ¬a ≡ ¬a′
¬-≡ ¬a ¬a′ = extensionality λ { a → ⊥-elim (¬a a) }
transport : {ℓ ℓ′ : Level} {A : Set ℓ} {x y : A}
→ (B : A → Set ℓ′) → x ≡ y → B x → B y
transport B refl x = x
assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′
assimilation ¬x ¬x′ = extensionality (λ x → ⊥-elim (¬x x))
-- naturals
module nat where
open eq
open decidability
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
suc-≡ : ∀ {m n} → m ≡ n → suc m ≡ suc n
suc-≡ refl = refl
suc-inj : ∀ {m n} → suc m ≡ suc n → m ≡ n
suc-inj refl = refl
suc-≢ : ∀ {m n} → m ≢ n → suc m ≢ suc n
suc-≢ {zero} z≢z refl = z≢z refl
suc-≢ {suc m} sm≢sn ssm≡ssn = sm≢sn (suc-inj ssm≡ssn)
_≡ℕ?_ : (m : ℕ) → (n : ℕ) → Dec (m ≡ n)
zero ≡ℕ? zero = yes refl
zero ≡ℕ? suc n = no (λ ())
suc m ≡ℕ? zero = no (λ ())
suc m ≡ℕ? suc n with m ≡ℕ? n
... | yes m≡n = yes (suc-≡ m≡n)
... | no m≢n = no (suc-≢ m≢n)
-- products
module product where
open import Agda.Primitive using (Level; _⊔_)
-- dependent products
record Σ {ℓ ℓ′ : Level} (A : Set ℓ) (B : A → Set ℓ′) : Set (ℓ ⊔ ℓ′) where
constructor ⟨_,_⟩
field
fst : A
snd : B fst
infixr 4 ⟨_,_⟩
{-# BUILTIN SIGMA Σ #-}
-- nice syntax
open Σ public
renaming (fst to proj₁; snd to proj₂)
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
infix 2 Σ-syntax
-- existence
∃ : ∀ {ℓ ℓ′ : Level} {A : Set ℓ} → (A → Set ℓ′) → Set (ℓ ⊔ ℓ′)
∃ = Σ _
-- existence syntax
infix 2 ∃-syntax
∃-syntax : ∀ {ℓ ℓ′ : Level} {A : Set ℓ} → (A → Set ℓ′) → Set (ℓ ⊔ ℓ′)
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
-- non-dependent products
_×_ : ∀ {ℓ ℓ′ : Level} (A : Set ℓ) (B : Set ℓ′) → Set (ℓ ⊔ ℓ′)
A × B = Σ[ x ∈ A ] B
infixr 2 _×_
module list where
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
infixr 99 _∷_
infixr 9 _++_
pattern ∣[_] z = z ∷ []
pattern ∣[_,_] y z = y ∷ z ∷ []
pattern ∣[_,_,_] x y z = x ∷ y ∷ z ∷ []
pattern ∣[_,_,_,_] w x y z = w ∷ x ∷ y ∷ z ∷ []
pattern ∣[_,_,_,_,_] v w x y z = v ∷ w ∷ x ∷ y ∷ z ∷ []
pattern ∣[_,_,_,_,_,_] u v w x y z = u ∷ v ∷ w ∷ x ∷ y ∷ z ∷ []
_++_ : ∀ {A : Set} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
module iso where
open eq using (_≡_)
infix 0 _≃_
record _≃_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
module iff where
infix 0 _⇔_
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open negation public
open decidability public
open eq public
open nat public
open product public
open list public
open iso public
open iff public