-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtotality.agda
142 lines (138 loc) · 9.48 KB
/
totality.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
open import prelude
open import core
open import marking.marking
module marking.totality where
mutual
↬⇒-totality : (Γ : Ctx)
→ (e : UExp)
→ Σ[ τ ∈ Typ ] Σ[ ě ∈ Γ ⊢⇒ τ ] (Γ ⊢ e ↬⇒ ě)
↬⇒-totality Γ (‵⦇-⦈^ x) = ⟨ unknown , ⟨ ⊢⦇-⦈^ x , MKSHole ⟩ ⟩
↬⇒-totality Γ (‵ x)
with Γ ∋?? x
... | yes (Z {τ = τ}) = ⟨ τ , ⟨ ⊢ Z , MKSVar Z ⟩ ⟩
... | yes (S {τ = τ} x≢x′ ∋x) = ⟨ τ , ⟨ ⊢ (S x≢x′ ∋x) , MKSVar (S x≢x′ ∋x) ⟩ ⟩
... | no ∌x = ⟨ unknown , ⟨ ⊢⟦ ∌x ⟧ , MKSFree ∌x ⟩ ⟩
↬⇒-totality Γ (‵λ x ∶ τ ∙ e)
with ⟨ τ′ , ⟨ ě , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality (Γ , x ∶ τ) e
= ⟨ τ -→ τ′ , ⟨ ⊢λ x ∶ τ ∙ ě , MKSLam e↬⇒ě ⟩ ⟩
↬⇒-totality Γ (‵ e₁ ∙ e₂)
with ↬⇒-totality Γ e₁
... | ⟨ τ , ⟨ ě₁ , e₁↬⇒ě₁ ⟩ ⟩
with τ ▸-→?
... | no τ!▸
with ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality Γ unknown e₂
= ⟨ unknown , ⟨ ⊢⸨ ě₁ ⸩∙ ě₂ [ τ!▸ ] , MKSAp2 e₁↬⇒ě₁ τ!▸ e₂↬⇐ě₂ ⟩ ⟩
... | yes ⟨ τ₁ , ⟨ τ₂ , τ▸τ₁-→τ₂ ⟩ ⟩
with ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality Γ τ₁ e₂
= ⟨ τ₂ , ⟨ ⊢ ě₁ ∙ ě₂ [ τ▸τ₁-→τ₂ ] , MKSAp1 e₁↬⇒ě₁ τ▸τ₁-→τ₂ e₂↬⇐ě₂ ⟩ ⟩
↬⇒-totality Γ (‵ x ← e₁ ∙ e₂)
with ⟨ τ₁ , ⟨ ě₁ , e₁↬⇒ě₁ ⟩ ⟩ ← ↬⇒-totality Γ e₁
with ⟨ τ₂ , ⟨ ě₂ , e₂↬⇒ě₂ ⟩ ⟩ ← ↬⇒-totality (Γ , x ∶ τ₁) e₂
= ⟨ τ₂ , ⟨ ⊢ x ← ě₁ ∙ ě₂ , MKSLet e₁↬⇒ě₁ e₂↬⇒ě₂ ⟩ ⟩
↬⇒-totality Γ (‵ℕ n) = ⟨ num , ⟨ ⊢ℕ n , MKSNum ⟩ ⟩
↬⇒-totality Γ (‵ e₁ + e₂)
with ⟨ ě₁ , e₁↬⇐ě₁ ⟩ ← ↬⇐-totality Γ num e₁
| ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality Γ num e₂
= ⟨ num , ⟨ ⊢ ě₁ + ě₂ , MKSPlus e₁↬⇐ě₁ e₂↬⇐ě₂ ⟩ ⟩
↬⇒-totality Γ ‵tt = ⟨ bool , ⟨ ⊢tt , MKSTrue ⟩ ⟩
↬⇒-totality Γ ‵ff = ⟨ bool , ⟨ ⊢ff , MKSFalse ⟩ ⟩
↬⇒-totality Γ (‵ e₁ ∙ e₂ ∙ e₃)
with ⟨ ě₁ , e₁↬⇐ě₁ ⟩ ← ↬⇐-totality Γ bool e₁
| ⟨ τ₁ , ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ⟩ ← ↬⇒-totality Γ e₂
| ⟨ τ₂ , ⟨ ě₃ , e₃↬⇒ě₃ ⟩ ⟩ ← ↬⇒-totality Γ e₃
with τ₁ ~? τ₂
... | yes τ₁~τ₂
with ⟨ τ , ⊓⇒τ ⟩ ← ~→⊓ τ₁~τ₂
= ⟨ τ , ⟨ ⊢ ě₁ ∙ ě₂ ∙ ě₃ [ ⊓⇒τ ] , MKSIf e₁↬⇐ě₁ e₂↬⇐ě₂ e₃↬⇒ě₃ ⊓⇒τ ⟩ ⟩
... | no τ₁~̸τ₂ = ⟨ unknown , ⟨ ⊢⦉ ě₁ ∙ ě₂ ∙ ě₃ ⦊[ τ₁~̸τ₂ ] , MKSInconsistentBranches e₁↬⇐ě₁ e₂↬⇐ě₂ e₃↬⇒ě₃ τ₁~̸τ₂ ⟩ ⟩
↬⇒-totality Γ ‵⟨ e₁ , e₂ ⟩
with ⟨ τ₁ , ⟨ ě₁ , e₁↬⇒ě₁ ⟩ ⟩ ← ↬⇒-totality Γ e₁
with ⟨ τ₂ , ⟨ ě₂ , e₂↬⇒ě₂ ⟩ ⟩ ← ↬⇒-totality Γ e₂
= ⟨ τ₁ -× τ₂ , ⟨ ⊢⟨ ě₁ , ě₂ ⟩ , MKSPair e₁↬⇒ě₁ e₂↬⇒ě₂ ⟩ ⟩
↬⇒-totality Γ (‵π₁ e)
with ⟨ τ , ⟨ ě , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
with τ ▸-×?
... | yes ⟨ τ₁ , ⟨ τ₂ , τ▸ ⟩ ⟩ = ⟨ τ₁ , ⟨ ⊢π₁ ě [ τ▸ ] , MKSProjL1 e↬⇒ě τ▸ ⟩ ⟩
... | no τ!▸ = ⟨ unknown , ⟨ ⊢π₁⸨ ě ⸩[ τ!▸ ] , MKSProjL2 e↬⇒ě τ!▸ ⟩ ⟩
↬⇒-totality Γ (‵π₂ e)
with ⟨ τ , ⟨ ě , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
with τ ▸-×?
... | yes ⟨ τ₁ , ⟨ τ₂ , τ▸ ⟩ ⟩ = ⟨ τ₂ , ⟨ ⊢π₂ ě [ τ▸ ] , MKSProjR1 e↬⇒ě τ▸ ⟩ ⟩
... | no τ!▸ = ⟨ unknown , ⟨ ⊢π₂⸨ ě ⸩[ τ!▸ ] , MKSProjR2 e↬⇒ě τ!▸ ⟩ ⟩
↬⇐-subsume : ∀ {Γ e τ}
→ (ě : Γ ⊢⇒ τ)
→ (τ′ : Typ)
→ (Γ ⊢ e ↬⇒ ě)
→ (s : USubsumable e)
→ Σ[ ě ∈ Γ ⊢⇐ τ′ ] (Γ ⊢ e ↬⇐ ě)
↬⇐-subsume {τ = τ} ě τ′ e↬⇒ě s with τ′ ~? τ
... | yes τ′~τ = ⟨ ⊢∙ ě [ τ′~τ ∙ USu→MSu s e↬⇒ě ] , MKASubsume e↬⇒ě τ′~τ s ⟩
... | no τ′~̸τ = ⟨ ⊢⸨ ě ⸩[ τ′~̸τ ∙ USu→MSu s e↬⇒ě ] , MKAInconsistentTypes e↬⇒ě τ′~̸τ s ⟩
↬⇐-totality : (Γ : Ctx)
→ (τ′ : Typ)
→ (e : UExp)
→ Σ[ ě ∈ Γ ⊢⇐ τ′ ] (Γ ⊢ e ↬⇐ ě)
↬⇐-totality Γ τ′ e@(‵⦇-⦈^ u)
with ⟨ .unknown , ⟨ ě@(⊢⦇-⦈^ _) , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
= ↬⇐-subsume ě τ′ e↬⇒ě USuHole
↬⇐-totality Γ τ′ e@(‵ x)
with ↬⇒-totality Γ e
... | ⟨ .unknown , ⟨ ě@(⊢⟦ ∌x ⟧) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuVar
... | ⟨ τ , ⟨ ě@(⊢ ∋x) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuVar
↬⇐-totality Γ τ′ e@(‵λ x ∶ τ ∙ e′)
with τ′ ▸-→?
... | yes ⟨ τ₁ , ⟨ τ₂ , τ′▸ ⟩ ⟩
with τ ~? τ₁
... | yes τ~τ₁
with ⟨ ě′ , e′↬⇐ě′ ⟩ ← ↬⇐-totality (Γ , x ∶ τ) τ₂ e′
= ⟨ ⊢λ x ∶ τ ∙ ě′ [ τ′▸ ∙ τ~τ₁ ] , MKALam1 τ′▸ τ~τ₁ e′↬⇐ě′ ⟩
... | no τ~̸τ₁
with ⟨ ě′ , e′↬⇐ě′ ⟩ ← ↬⇐-totality (Γ , x ∶ τ) τ₂ e′
= ⟨ ⊢λ x ∶⸨ τ ⸩∙ ě′ [ τ′▸ ∙ τ~̸τ₁ ] , MKALam3 τ′▸ τ~̸τ₁ e′↬⇐ě′ ⟩
↬⇐-totality Γ τ′ e@(‵λ x ∶ τ ∙ e′)
| no τ′!▸
with ⟨ ě′ , e′↬⇐ě′ ⟩ ← ↬⇐-totality (Γ , x ∶ τ) unknown e′
= ⟨ ⊢⸨λ x ∶ τ ∙ ě′ ⸩[ τ′!▸ ] , MKALam2 τ′!▸ e′↬⇐ě′ ⟩
↬⇐-totality Γ τ′ e@(‵ _ ∙ _)
with ↬⇒-totality Γ e
... | ⟨ .unknown , ⟨ ě@(⊢⸨ _ ⸩∙ _ [ _ ]) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuAp
... | ⟨ _ , ⟨ ě@(⊢ _ ∙ _ [ _ ]) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuAp
↬⇐-totality Γ τ′ (‵ x ← e₁ ∙ e₂)
with ⟨ τ₁ , ⟨ ě₁ , e₁↬⇒ě₁ ⟩ ⟩ ← ↬⇒-totality Γ e₁
with ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality (Γ , x ∶ τ₁) τ′ e₂
= ⟨ ⊢ x ← ě₁ ∙ ě₂ , MKALet e₁↬⇒ě₁ e₂↬⇐ě₂ ⟩
↬⇐-totality Γ τ′ e@(‵ℕ _)
with ⟨ _ , ⟨ ě@(⊢ℕ _) , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
= ↬⇐-subsume ě τ′ e↬⇒ě USuNum
↬⇐-totality Γ τ′ e@(‵ _ + _)
with ⟨ _ , ⟨ ě@(⊢ _ + _) , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
= ↬⇐-subsume ě τ′ e↬⇒ě USuPlus
↬⇐-totality Γ τ′ e@(‵tt)
with ⟨ _ , ⟨ ě@(⊢tt) , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
= ↬⇐-subsume ě τ′ e↬⇒ě USuTrue
↬⇐-totality Γ τ′ e@(‵ff)
with ⟨ _ , ⟨ ě@(⊢ff) , e↬⇒ě ⟩ ⟩ ← ↬⇒-totality Γ e
= ↬⇐-subsume ě τ′ e↬⇒ě USuFalse
↬⇐-totality Γ τ′ (‵ e₁ ∙ e₂ ∙ e₃)
with ⟨ ě₁ , e₁↬⇐ě₁ ⟩ ← ↬⇐-totality Γ bool e₁
| ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality Γ τ′ e₂
| ⟨ ě₃ , e₃↬⇐ě₃ ⟩ ← ↬⇐-totality Γ τ′ e₃
= ⟨ ⊢ ě₁ ∙ ě₂ ∙ ě₃ , MKAIf e₁↬⇐ě₁ e₂↬⇐ě₂ e₃↬⇐ě₃ ⟩
↬⇐-totality Γ τ′ ‵⟨ e₁ , e₂ ⟩
with τ′ ▸-×?
... | yes ⟨ τ₁ , ⟨ τ₂ , τ′▸ ⟩ ⟩
with ⟨ ě₁ , e₁↬⇐ě₁ ⟩ ← ↬⇐-totality Γ τ₁ e₁
with ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality Γ τ₂ e₂
= ⟨ ⊢⟨ ě₁ , ě₂ ⟩[ τ′▸ ] , MKAPair1 e₁↬⇐ě₁ e₂↬⇐ě₂ τ′▸ ⟩
... | no τ′!▸
with ⟨ ě₁ , e₁↬⇐ě₁ ⟩ ← ↬⇐-totality Γ unknown e₁
with ⟨ ě₂ , e₂↬⇐ě₂ ⟩ ← ↬⇐-totality Γ unknown e₂
= ⟨ ⊢⸨⟨ ě₁ , ě₂ ⟩⸩[ τ′!▸ ] , MKAPair2 e₁↬⇐ě₁ e₂↬⇐ě₂ τ′!▸ ⟩
↬⇐-totality Γ τ′ e@(‵π₁ _)
with ↬⇒-totality Γ e
... | ⟨ _ , ⟨ ě@(⊢π₁ _ [ _ ]) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuProjL
... | ⟨ _ , ⟨ ě@(⊢π₁⸨ _ ⸩[ _ ]) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuProjL
↬⇐-totality Γ τ′ e@(‵π₂ _)
with ↬⇒-totality Γ e
... | ⟨ _ , ⟨ ě@(⊢π₂ _ [ _ ]) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuProjR
... | ⟨ _ , ⟨ ě@(⊢π₂⸨ _ ⸩[ _ ]) , e↬⇒ě ⟩ ⟩ = ↬⇐-subsume ě τ′ e↬⇒ě USuProjR