-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNat.agda
30 lines (25 loc) · 937 Bytes
/
Nat.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
open import Prelude
module Nat where
data Nat : Set where
Z : Nat
1+ : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
-- the succ operation is injective
1+inj : (x y : Nat) → (1+ x == 1+ y) → x == y
1+inj Z .0 refl = refl
1+inj (1+ x) .(1+ x) refl = refl
-- equality of naturals is decidable. we represent this as computing a
-- choice of units, with inl <> meaning that the naturals are indeed the
-- same and inr <> that they are not.
natEQ : (x y : Nat) → ((x == y) + ((x == y) → ⊥))
natEQ Z Z = Inl refl
natEQ Z (1+ y) = Inr (λ ())
natEQ (1+ x) Z = Inr (λ ())
natEQ (1+ x) (1+ y) with natEQ x y
natEQ (1+ x) (1+ .x) | Inl refl = Inl refl
... | Inr b = Inr (λ x₁ → b (1+inj x y x₁))
-- nat equality as a predicate. this saves some very repetative casing.
natEQp : (x y : Nat) → Set
natEQp x y with natEQ x y
natEQp x .x | Inl refl = ⊥
natEQp x y | Inr x₁ = ⊤