-
Notifications
You must be signed in to change notification settings - Fork 2
/
ga_funcs.go
184 lines (164 loc) · 4.25 KB
/
ga_funcs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
package goga
import (
"math/rand"
"sort"
"sync"
"time"
)
func New(ops ...Option) (GA, error) {
g := new(ga)
g.loadDefaults()
for _, fn := range ops {
err := fn(g)
if err != nil {
return nil, err
}
}
err := g.init()
if err != nil {
return nil, err
}
return g, nil
}
func (s *ga) loadDefaults() {
s.config.initialPopulation = defaultInitialPopulation
s.population = defaultPopulation
s.weightFunc = defaultWeightFunc
s.config.maxNumOfSteps = defaultMaxNumOfSteps
s.config.targetCost = defaultTargetCost
s.config.stepsInterval = defaultStepsInterval
s.config.selection.top = defaultSelectionTop
s.config.selection.mutation = defaultSelectionMutation
s.config.selection.random = float64(1) - defaultSelectionTop - defaultSelectionMutation
s.config.numberOfThreads = defaultNumberOfThreads
}
func (s *ga) RuntimeBestResult() chan RunTimeResult {
return s.runtimeResult
}
func (s *ga) init() error {
s.runtimeError = make(chan error, 10)
s.result = make(chan Model, 1)
s.runtimeResult = make(chan RunTimeResult, 1000)
return nil
}
// Start the Process
func (s *ga) Start() error {
// generate the first population
// calculate cost for each model ||Parallel
// sort the generation
// check stopping condition
// if end respond on Queue
// if not end, wait the interval then start over.
go func() {
err := s.generateRemindingGeneration(s.config.initialPopulation)
if err != nil {
s.runtimeError <- err
}
s.calculateCosts()
s.sort()
s.step = 0
for {
genLen := len(s.curetGeneration)
nextPopulation := s.population(genLen, s.step, s.curetGeneration[0].cost, s.curetGeneration[genLen-1].cost)
top := s.getTop(int(nextPopulation))
mut := s.getMutation(int(nextPopulation))
s.curetGeneration = append(top, mut...)
err := s.generateRemindingGeneration(nextPopulation)
if err != nil {
s.runtimeError <- err
}
s.calculateCosts()
s.sort()
s.runtimeResult <- RunTimeResult{
Model: s.curetGeneration[0].model,
Cost: s.curetGeneration[0].cost,
Step: s.step,
}
if s.curetGeneration[0].cost <= s.config.targetCost {
break
}
if s.config.maxNumOfSteps != 0 && s.step >= s.config.maxNumOfSteps {
break
}
time.Sleep(s.config.stepsInterval)
s.step++
}
s.result <- s.curetGeneration[0].model
}()
return nil
}
// todo add comment
func (s *ga) Result() (Model, error) {
select {
case res, ok := <-s.result:
if !ok {
return nil, ErrExecutionFailed("cannot reading data from a closed channel")
}
return res, nil
case err := <-s.runtimeError:
return nil, err
}
}
func (s *ga) generateRemindingGeneration(nextPopulation int) error {
for i := len(s.curetGeneration); i < nextPopulation; i++ {
s.curetGeneration = append(s.curetGeneration, modelRecord{s.generator(), 0})
}
return nil
}
func (s *ga) calculateCosts() {
C := make(chan int, len(s.curetGeneration))
for i := range s.curetGeneration {
C <- i
}
wg := &sync.WaitGroup{}
wg.Add(s.config.numberOfThreads)
for i := 0; i < s.config.numberOfThreads; i++ {
go func() {
InnerLoop:
for {
select {
case j, ok := <-C:
if !ok {
break InnerLoop
}
cost := s.curetGeneration[j].model.Cost()
s.Lock()
s.curetGeneration[j].cost = cost
s.Unlock()
default:
break InnerLoop
}
}
wg.Done()
}()
}
wg.Wait()
close(C)
}
func (s *ga) sort() {
sort.Sort(s.curetGeneration)
}
func (s *ga) getTop(population int) []modelRecord {
return s.curetGeneration[:int(s.config.selection.top*float64(population))]
}
func (s *ga) getMutation(population int) []modelRecord {
//todo add check that the generation size is not grow too fast.
var selectingItems []int
List := s.curetGeneration[:int((s.config.selection.mutation+s.config.selection.top)*float64(population))]
//fill up the weighted indexes
for i, v := range List {
w := s.weightFunc(i, v.cost)
for j := 0; j < w; j++ {
selectingItems = append(selectingItems, i)
}
}
n := len(selectingItems) - 1
targetLen := int(s.config.selection.mutation * float64(population))
var res []modelRecord
for i := 0; i < targetLen/2; i++ {
A := List[selectingItems[rand.Intn(n)]].model
B := List[selectingItems[rand.Intn(n)]].model
res = append(res, modelRecord{A.Mutation(B), 0}, modelRecord{B.Mutation(A), 0})
}
return res
}