-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate_deepsdf_vtk.py
450 lines (400 loc) · 16.6 KB
/
evaluate_deepsdf_vtk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import argparse
import logging
import json
import numpy as np
import os
import torch
import trimesh
import deep_sdf.data_vtk as dt_vtk
import deep_sdf
import deep_sdf.workspace as ws
import networks.deep_sdf_decoder as decoder
import sys
from torch.autograd import Variable
import torch.utils.data as data_utils
import pdb
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
# import matplotlib.pylab as plt
def save_model(experiment_directory, filename, decoder, epoch):
model_params_dir = ws.get_model_params_dir(experiment_directory, True)
torch.save(
{"epoch": epoch, "model_state_dict": decoder.state_dict()},
os.path.join(model_params_dir, filename),
)
def to_var(x):
if torch.cuda.is_available():
x=x.cuda()
return Variable(x)
def save_logs(
experiment_directory,
loss_log,
lr_log,
timing_log,
lat_mag_log,
param_mag_log,
epoch,
):
torch.save(
{
"epoch": epoch,
"loss": loss_log,
"learning_rate": lr_log,
"timing": timing_log,
"latent_magnitude": lat_mag_log,
"param_magnitude": param_mag_log,
},
os.path.join(experiment_directory, ws.logs_filename),
)
def load_logs(experiment_directory):
full_filename = os.path.join(experiment_directory, ws.logs_filename)
if not os.path.isfile(full_filename):
raise Exception('log file "{}" does not exist'.format(full_filename))
data = torch.load(full_filename)
return (
data["loss"],
data["learning_rate"],
data["timing"],
data["latent_magnitude"],
data["param_magnitude"],
data["epoch"],
)
def append_parameter_magnitudes(param_mag_log, model):
for name, param in model.named_parameters():
if len(name) > 7 and name[:7] == "module.":
name = name[7:]
if not name in param_mag_log.keys():
param_mag_log[name] = []
param_mag_log[name].append(param.data.norm().item())
def load_model(checkpoint_path, decoder_eval):
checkpoint = torch.load(checkpoint_path)
print(decoder_eval)
return decoder_eval.load_state_dict(checkpoint['model_state_dict'])
def rotate_mat_z():
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, -sinval, 0],
[sinval, cosval, 0],
[0, 0, 1]])
return rotation_matrix
def rotate_mat_y():
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
return rotation_matrix
def rotate_mat_x():
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[1, 0, 0],
[0, cosval, -sinval],
[0, sinval, cosval]])
return rotation_matrix
def normals_estimate(test_model):
import pcl
p = pcl.PointCloud()
p.from_array(test_model)
norm = p.make_NormalEstimation()
tree = p.make_kdtree()
norm.set_SearchMethod(tree)
norm.set_KSearch(10)
normals = norm.compute()
normals_array = normals.to_array()
return normals_array[:,0:3]
@torch.utils.hooks.unserializable_hook
def evaluate(experiment_directory, checkpoint_path):
chamfer_results = []
specs = ws.load_experiment_specifications(experiment_directory)
logging.info("Experiment description: \n" + specs["Description"])
data_source = specs["DataSource"]
test_split_file = specs["TestSplit"]
num_samp_per_scene = specs["SamplesPerScene"]
scene_per_batch = specs["ScenesPerBatch"]
clamp_dist = specs["ClampingDistance"]
minT = -clamp_dist
maxT = clamp_dist
enforce_minmax = False
num_data_loader_threads =1
# scene_per_subbatch =1
batch_split = 1
scene_per_subbatch = scene_per_batch // batch_split
checkpoints = list(
range(
specs["SnapshotFrequency"],
specs["NumEpochs"] + 1,
specs["SnapshotFrequency"],
)
)
def signal_handler(sig, frame):
logging.info("Stopping early...")
sys.exit(0)
with open(test_split_file,"r") as f:
test_split = json.load(f)
sdf_dataset = dt_vtk.SDFVTKSamples(
data_source, test_split, num_samp_per_scene
)
sdf_loader = data_utils.DataLoader(
sdf_dataset,
batch_size=scene_per_subbatch,
shuffle=True,
num_workers=num_data_loader_threads,
drop_last=True,
)
decoder_eval = decoder.Decoder(0, **specs["NetworkSpecs"]).cuda()
checkpoint = torch.load(checkpoint_path)
decoder_eval.load_state_dict(checkpoint['model_state_dict'])
decoder_eval = decoder_eval.float()
# decoder_eval.eval()
for param in decoder_eval.parameters():
param.requires_grad = False
loss_l1 = torch.nn.L1Loss()
loss_l2 = torch.nn.MSELoss()
loss_cosine = torch.nn.CosineSimilarity()
loss_log =[]
theta_x = torch.randn(1, requires_grad=True, dtype=torch.float)*3.1415
theta_y = torch.randn(1, requires_grad=True, dtype=torch.float)*3.1415
theta_z = torch.randn(1, requires_grad=True, dtype=torch.float)*3.1415
theta_x = theta_x.float()
theta_y = theta_y.float()
theta_z = theta_z.float()
theta_x.retain_grad()
theta_y.retain_grad()
theta_z.retain_grad()
scale_one = torch.randn(1, requires_grad=True, dtype=torch.float)
scale_two = torch.randn(1, requires_grad=True, dtype=torch.float)
scale_three = torch.randn(1, requires_grad=True, dtype=torch.float)
scale_one.retain_grad()
scale_two.retain_grad()
scale_three.retain_grad()
# transform_matrix = torch.zeros(3,3).float().cuda()
# transform_matrix.requires_grad_(True)
# transform_matrix.retain_grad()
# transform_inpt = torch.randn(3,3).float().cuda()
# transform_inpt.requires_grad_(True)
# transform_inpt.retain_grad()
bias = torch.zeros(3).float().cuda()
bias.requires_grad_(True)
bias.retain_grad()
test_model = np.array(pd.read_csv("../chairs_segdata/points/1a8bbf2994788e2743e99e0cae970928.pts", header=None,sep=" ").values,dtype=np.float32)
test_normals = torch.from_numpy(normals_estimate(test_model))
# pdb.set_trace()
num_epochs = 500
learning_rate = 1e-3
test_pts = torch.from_numpy(test_model).float()
test_pts.requies_grad = False
bt_size = 32
num_batches = int(test_model.shape[0]//bt_size)
sub = torch.Tensor([1]).cuda()
reg = 1
# rot_x = torch.from_numpy(rotate_mat_x()).double().cuda()
# rot_x.requires_grad_(True)
# rot_y = torch.from_numpy(rotate_mat_y()).double().cuda()
# rot_y.requires_grad_(True)
# rot_z = torch.from_numpy(rotate_mat_z()).double().cuda()
# rot_z.requires_grad_(True)
with torch.enable_grad():
for j in range(num_epochs):
# pdb.set_trace()
# Process the input datag
# sdf_data.requires_grad = False
# sdf_data = (sdf_data.cuda()).reshape(
# num_samp_per_scene * scene_per_subbatch, 4
# )
# xyz = sdf_data[:, 0:3]
# transform_matrix_update = torch.add(transform_matrix,bias)
batch_loss=0
for i in range(num_batches):
test_torch = test_pts[i*bt_size:(i+1)*bt_size,:]
normals_bt = test_normals[i*bt_size:(i+1)*bt_size,:]
normals_bt = normals_bt.float().cuda()
# pdb.set_trace()
cosval_x = torch.cos(theta_x)
sinval_x = torch.sin(theta_x)
cosval_x.requires_grad_(True)
sinval_x.requires_grad_(True)
cosval_x.retain_grad()
sinval_x.retain_grad()
rot_x = torch.stack([torch.Tensor([1, 0, 0]),
torch.cat([torch.Tensor([0]), cosval_x, -sinval_x]),
torch.cat([torch.Tensor([0]), sinval_x, cosval_x])], dim=1).float().cuda()
rot_x.requires_grad_(True)
rot_x.retain_grad()
cosval_y = torch.cos(theta_y)
sinval_y = torch.sin(theta_y)
cosval_y.requires_grad_(True)
sinval_y.requires_grad_(True)
cosval_y.retain_grad()
sinval_y.retain_grad()
rot_y = torch.stack([torch.cat([cosval_y, torch.Tensor([0]), sinval_y]),
torch.Tensor([0, 1, 0]),
torch.cat([-sinval_y, torch.Tensor([0]), cosval_y])],dim=1).float().cuda()
rot_y.requires_grad_(True)
rot_y.retain_grad()
cosval_z = torch.cos(theta_z)
sinval_z = torch.sin(theta_z)
cosval_z.requires_grad_(True)
sinval_z.requires_grad_(True)
cosval_z.retain_grad()
sinval_z.retain_grad()
rot_z = torch.stack([torch.cat([cosval_z, -sinval_z, torch.Tensor([0])]),
torch.cat([sinval_z, cosval_z, torch.Tensor([0])]),
torch.Tensor([0, 0, 1])], dim=1).float().cuda()
rot_z.requires_grad_(True)
rot_z.retain_grad()
scale_matrix = torch.cat([torch.cat([scale_one,torch.Tensor([0]),torch.Tensor([0])]),
torch.cat([torch.Tensor([0]),scale_two,torch.Tensor([0])]),
torch.cat([torch.Tensor([0]),torch.Tensor([0]),scale_three])]).view(3,3).float().cuda()
# pdb.set_trace()
scale_matrix.retain_grad()
scale_matrix.requires_grad_(True)
transform_matrix = torch.matmul(torch.matmul(torch.matmul(rot_z,rot_y),rot_x),scale_matrix)
transform_matrix.requires_grad_(True)
transform_matrix.retain_grad()
normals_transform = torch.matmul(normals_bt,transform_matrix)
normals_transform.requires_grad_(True)
normals_transform.retain_grad()
# transform_matrix = torch.matmul(transform_inpt, scale_matrix)
xyz = test_torch.cuda()
xyz_transform = torch.matmul(xyz, transform_matrix)
xyz_transform.requires_grad_(True)
xyz_transform.retain_grad()
transform_bias = torch.add(xyz_transform, bias).float()
transform_bias.retain_grad()
# diag_sum = torch.abs(torch.sum(torch.diag(transform_matrix)))
# sdf_gt = sdf_data[:, 3].unsqueeze(1)
pred_sdf = decoder_eval(transform_bias)
normals_out = pred_sdf[:,1:4]
# pdb.set_trace()
# pred_sdf = decoder_eval(xyz_transform)
# loss = loss_l1(pred_sdf, sdf_gt)
target = torch.zeros(pred_sdf[:,0].shape[0]).float().cuda()
# batch_loss += loss.item()
# pdb.set_trace()
diag_sum = torch.norm(torch.sub(torch.diag(scale_matrix),sub),2)
diag_sum.retain_grad()
diag_sum.requires_grad_(True)
# diag_sum = torch.sum(torch.diag(transform_matrix)).cpu()
loss1 = loss_l2(pred_sdf[:,0],target)
loss2 = reg *diag_sum
loss3 = torch.mean(loss_cosine(normals_out,normals_transform))
# loss2 = torch.abs(torch.sub(diag_sum,1))
loss = torch.add(torch.add(loss1,loss2),loss3)
loss.backward(retain_graph=True)
batch_loss+= loss.item()
print('Batch Loss {:6.4f}'.format(loss.item()))
with torch.no_grad():
theta_z.data.sub_(theta_z.grad.data*learning_rate)
theta_y.data.sub_(theta_y.data*learning_rate)
theta_x.data.sub_(theta_x.grad.data*learning_rate)
bias.data.sub_(bias.grad.data*learning_rate)
scale_one.data.sub_(scale_one.grad.data*learning_rate)
scale_two.data.sub_(scale_two.grad.data*learning_rate)
scale_three.data.sub_(scale_three.grad.data*learning_rate)
theta_z.grad.data.zero_()
theta_y.grad.data.zero_()
theta_x.grad.data.zero_()
bias.grad.data.zero_()
scale_one.grad.data.zero_()
scale_three.grad.data.zero_()
scale_two.grad.data.zero_()
scale_matrix.grad.data.zero_()
transform_bias.grad.data.zero_()
xyz_transform.grad.data.zero_()
transform_matrix.grad.data.zero_()
diag_sum.grad.data.zero_()
rot_z.grad.data.zero_()
rot_x.grad.data.zero_()
rot_y.grad.data.zero_()
# pdb.set_trace()
actual_loss = (batch_loss*bt_size)/(test_model.shape[0])
# print("Loss after {} epoch is {:6.4f}".format(j,batch_loss))
print("Loss after {} epoch is {:6.4f}".format(j,actual_loss))
loss_log.append(actual_loss)
pdb.set_trace()
fig,ax = plt.subplots()
ax.plot(np.arange(num_epochs),loss_log)
ax.set(xlabel='iterations',ylabel='transformationloss')
plt.savefig('Transformation_loss_new.png')
torch.save(transform_matrix,'transform_matrix_new.pt')
torch.save(bias,'bias_new.pt')
test_pts = torch.from_numpy(pd.read_csv('test_model.pts',header=None, sep=' ').values).cuda()
transform_pts = torch.matmul(test_pts, transform_matrix.double())
transform_pts = torch.add(transform_pts, bias.double()).cpu().detach().numpy()
np.savetxt('transform_points_new.pts',transform_pts)
plot_heatmap(experiment_directory, checkpoint_path)
# avg_loss = sum(loss_log)/len(loss_log)
# print('Average loss is {:6.4f}'.format(avg_loss))
# with open(
# os.path.join(
# ws.get_evaluation_dir(experiment_directory, checkpoint, True),
# "chamfer.csv",
# ),
# "w",
# ) as f:
# f.write("shape, chamfer_dist\n")
# for result in chamfer_results:
# f.write("{}, {}\n".format(result[0], result[1]))
def plot_heatmap(experiment_directory, checkpoint_path):
from matplotlib import cm
specs = ws.load_experiment_specifications(experiment_directory)
decoder_eval = decoder.Decoder(0, **specs["NetworkSpecs"]).cuda()
checkpoint = torch.load(checkpoint_path)
decoder_eval.load_state_dict(checkpoint['model_state_dict'])
decoder_eval = decoder_eval.float().cuda()
test_model_transformed = torch.from_numpy(np.array(pd.read_csv("transform_points_new.pts", header=None,sep=" ").values)).float().cuda()
distances = decoder_eval(test_model_transformed)[:,0]
distances = distances.detach().cpu().numpy()
transformed_pts = test_model_transformed.detach().cpu().numpy()
x = transformed_pts[:,0]
y = transformed_pts[:,1]
z = transformed_pts[:,2]
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
fig = matplotlib.pyplot.gcf()
ax = Axes3D(fig)
cax = ax.scatter(x.flatten(), y.flatten(), z.flatten(), c=distances.flatten())
# fig.colorbar(cax, shrink=0.5, aspect=10)
cbar=plt.colorbar(cax)
# plt.show()
# pdb.set_trace()
# ax = sns.heatmap(lis, linewidth=0.5)
ax.figure.savefig('heatmap.png')
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(
description="Evaluate a DeepSDF autodecoder"
)
arg_parser.add_argument(
"--experiment",
"-e",
dest="experiment_directory",
required=True,
help="The experiment directory. This directory should include experiment specifications in "
+ '"specs.json", and logging will be done in this directory as well.',
)
arg_parser.add_argument(
"--checkpoint",
"-c",
dest="checkpoint",
default="latest",
help="The checkpoint to test.",
)
deep_sdf.add_common_args(arg_parser)
args = arg_parser.parse_args()
deep_sdf.configure_logging(args)
evaluate(
args.experiment_directory,
args.checkpoint,
)
# plot_heatmap(
# args.experiment_directory,
# args.checkpoint
# )