-
Notifications
You must be signed in to change notification settings - Fork 0
/
vgg19.py
137 lines (119 loc) · 6.34 KB
/
vgg19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import print_function
import numpy as np
import warnings
from keras.models import Model
from keras.layers import Flatten, Dense, Input
from keras.layers import Convolution2D, MaxPooling2D
from keras.preprocessing import image
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras import backend as K
from imagenet_utils import decode_predictions, preprocess_input
TH_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_th_dim_ordering_th_kernels.h5'
TF_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5'
TH_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_th_dim_ordering_th_kernels_notop.h5'
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5'
def VGG19(include_top=True, weights='imagenet',
input_tensor=None):
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
# Determine proper input shape
if K.image_dim_ordering() == 'th':
if include_top:
input_shape = (3, 224, 224)
else:
input_shape = (3, None, None)
else:
if include_top:
input_shape = (224, 224, 3)
else:
input_shape = (None, None, 3)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor)
else:
img_input = input_tensor
# Block 1
x = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='block1_conv1')(img_input)
x = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Convolution2D(128, 3, 3, activation='relu', border_mode='same', name='block2_conv1')(x)
x = Convolution2D(128, 3, 3, activation='relu', border_mode='same', name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv1')(x)
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv2')(x)
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv3')(x)
x = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='block3_conv4')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv1')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv2')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv3')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block4_conv4')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv1')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv2')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv3')(x)
x = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='block5_conv4')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
if include_top:
# Classification block
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
x = Dense(1000, activation='softmax', name='predictions')(x)
# Create model
model = Model(img_input, x)
# load weights
if weights == 'imagenet':
print('K.image_dim_ordering:', K.image_dim_ordering())
if K.image_dim_ordering() == 'th':
if include_top:
weights_path = get_file('vgg19_weights_th_dim_ordering_th_kernels.h5',
TH_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('vgg19_weights_th_dim_ordering_th_kernels_notop.h5',
TH_WEIGHTS_PATH_NO_TOP,
cache_subdir='models')
model.load_weights(weights_path)
if K.backend() == 'tensorflow':
# warnings.warn('You are using the TensorFlow backend, yet you '
# 'are using the Theano '
# 'image dimension ordering convention '
# '(`image_dim_ordering="th"`). '
# 'For best performance, set '
# '`image_dim_ordering="tf"` in '
# 'your Keras config '
# 'at ~/.keras/keras.json.')
convert_all_kernels_in_model(model)
else:
if include_top:
weights_path = get_file('vgg19_weights_tf_dim_ordering_tf_kernels.h5',
TF_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models')
model.load_weights(weights_path)
if K.backend() == 'theano':
convert_all_kernels_in_model(model)
return model
if __name__ == '__main__':
model = VGG19(include_top=True, weights='imagenet')
img_path = 'cat.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds))