-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreconstruct.jl
129 lines (111 loc) · 4.16 KB
/
reconstruct.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
using Random, FFTW, Statistics, LinearAlgebra, EllipsisNotation, Wavelets, PaddedViews,
AbstractOperators, OffsetArrays, PyCall, Distributed, ConfParser, JLD
include("functions.jl")
print("Reading data... ")
@load "data.jld"
imSize, imType, kSize, kType = size(image4D), eltype(image4D), size(kSpace), eltype(kSpace)
println("done")
@assert length(ARGS) == 1
println("Reading conf file: $(ARGS[1]).conf")
conf = ConfParse("$(ARGS[1]).conf")
parse_conf!(conf)
N = parse(Int, retrieve(conf, "N"))
undersampling_rate = parse(Float64, retrieve(conf, "undersampling_rate"))
fully_sampled_radius = parse(Float64, retrieve(conf, "fully_sampled_radius"))
λ₁ = parse(real(imType), retrieve(conf, "lambda_1"))
λ₂ = parse(real(imType), retrieve(conf, "lambda_2"))
λ₃ = parse(real(imType), retrieve(conf, "lambda_3"))
verbose = parse(Bool, retrieve(conf, "verbose"))
println("done")
#-----------------------------------------------
Random.seed!(1)
print("Generate mask... ")
pdf = generatePDF(floor(Int,imSize[1]/2) + 1, undersampling_rate, r = fully_sampled_radius)
pdf_2D = pdf * ones(imSize[3])'
mask = generate_mask(pdf_2D, 50, 0.01)
println("done")
print("Simulate measurement... ")
plan = plan_rfft(image4D, [1,2,3])
fft_temp = similar(plan * image4D)
inv_plan = plan_irfft(fft_temp, imSize[1], [1,2,3]);
normalizer = √(prod(imSize[1:3]) / 2)
Fᵤ = MyLinOp(imType, imSize, kType, kSize,
(b, x) -> b .= 1/normalizer .* mask .* mul!(b, plan, x),
(b, x) -> b .= normalizer .* mul!(b, inv_plan, fft_temp .= x))
y = Fᵤ * image4D
println("done")
image3D = sum(image4D, dims = 4)
image3D_norm = norm(image3D)
mse_temp = similar(image3D)
mse(img) = norm(sum!(mse_temp, img) .-= image3D) / image3D_norm
print("Zero-filling reconstruction... ")
image4D_zf = Fᵤ' * y
println("done")
print("Preparations... ")
norm₁(v) = norm(v, 1)
norm₂(x) = norm(x)
norm₂²(x) = abs(vec(x)' * vec(x))
wt = wavelet(WT.Daubechies{4}(), WT.Filter, WT.Periodic)
transformed_size = ((2 .^ (ceil.(Int, log2.(imSize[1:3]))))..., imSize[4])
temp_wavelet = similar(image3D, transformed_size)
oneTo(x) = 1:x
Ψ = MyLinOp(imType, imSize, transformed_size,
(b, x) -> begin
img = PaddedView(0, x, size(b))
Threads.@threads for i in 1:imSize[4]
@views dwt!(b[..,i], img[..,i], wt)
end
b
end,
(b, x) -> begin
Threads.@threads for i in 1:imSize[4]
@views idwt!(temp_wavelet[..,i], x[..,i], wt)
end
b .= @view temp_wavelet[oneTo.(imSize)...]
end)
TV = MyLinOp(imType, imSize, (imSize[1:3]..., 3, imSize[end]),
(∇, image) -> begin
Threads.@threads for i in 1:imSize[end]
for d in 1:ndims(image)-1
@views _finite_differences!(∇[..,d, i], image[..,i], d)
end
end
∇
end,
(∇, image) -> begin
Threads.@threads for i in 1:imSize[end]
for d in 1:ndims(∇)-1
@views _second_order_finite_differences!(∇[..,i], image[..,d, i], d, d == 1)
end
end
∇
end)
prox_tv = pyimport("prox_tv")
temp₁, temp₂, temp₃, temp₄ = Fᵤ * image4D, Ψ * image4D, TV * image4D, similar(image4D)
f_pogm(x) = norm₂²(mul!(temp₁, Fᵤ, x) .-= y)
∇f_pogm!(b, x) = begin
#2 * Fᵤ' * (Fᵤ * x - y)
mul!(temp₁, Fᵤ, x)
temp₁ .-= y
mul!(b, Fᵤ', temp₁)
b .*= 2
end
g_pogm(x) = (λ₁ != 0 ? λ₁ * norm(mul!(temp₂, Ψ, x), 1) : 0) +
(λ₂ != 0 ? λ₂ * norm(mul!(temp₃, TV, x), 1) : 0) +
(λ₃ != 0 ? λ₃ * sum(svdvals(reshape(x, :, imSize[end]))) : 0)
prox_g_pogm!(b, x, γ) = begin
if λ₂ != 0
for i in 1:imSize[end]
@views b[..,i] .= prox_tv.tvgen(x[..,i], (γ*λ₂, γ*λ₂, γ*λ₂), (1, 2, 3), (1, 1, 1))
end
end
λ₁ != 0 && mul!(b, Ψ', Λ!(mul!(temp₂, Ψ, b), γ * λ₁))
λ₃ != 0 && SVT!(reshape(b, :, imSize[end]), λ₃)
b
end
println("done")
println("Reconstruction...")
@time image4D_pogm, f_vec_pogm, NMSE_vec_pogm = POGM(image4D_zf, f_pogm, ∇f_pogm!, g_pogm, prox_g_pogm!,
N = N, L = 1, verbose = verbose)
println("done")
@save "$(ARGS[1]).jld" image4D_pogm f_vec_pogm NMSE_vec_pogm