-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClimAnalFunctions.py
399 lines (327 loc) · 13.2 KB
/
ClimAnalFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
##########################################################################################
# PyClim was developed by Prof. Darren Robinson (University of Sheffield, 2019). #
# PyClim produces a range of graphs and statistics to support the analysis of climate #
# data, to support architectural / engineering / technology students to develop their #
# early-stage bioclimatic design concepts. #
##########################################################################################
#THIS MODULE CONTAINS THE CLIMATE ANALYSIS FUNCTIONS, IN PARTICULAR RELATING TO
#SOLAR RADIATION, ILLUMINATION AND PSYCHROMETRIC PROCESSES.
#imports the basic libraries
import math
import matplotlib.pyplot as plt
import numpy as np
pi = 3.141592654
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
# HERE WE OPEN THE CLIMATE FILE AND ASSIGN COORDINATES
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
file = open("./Finningley.csv", "r")
lat = 53.7
longitude = -1
timezone= 0
timeshift = -0.5 #for the hour-centred time convention
groundref=0.2
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
# FUNCTIONS TO CALCULATE THE PSYCHROMETRIC PROPERTIES OF HUMID AIR
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
def g(dbt, rh):
#calculates moisture content from dbt and rh
psatvap=pss(dbt)
mc=gss(fs(dbt),psatvap)
lhs = rh*mc
low=0.0001
middle=100
high=1
errorlimit=0.00001
error=1
while error>errorlimit:
middle=low+(high-low)/2
rhmid=100*middle
if lhs<rhmid:
high=middle
else:
low=middle
error=math.fabs(lhs-rhmid)
g=middle
return g
#def H(dbt,rh):
##Calculates the enthalpy of air
# mc=g(dbt,rh)
# if dbt>=0:
# air_enthalpy = 1.007*dbt-0.026
# else:
# air_enthalpy=1.005*dbt
# vapour_enthalpy=2501+1.84*dbt
# H=air_enthalpy+mc*vapour_enthalpy
# return H
def tsat(mc):
#Calculates saturation temperature from moisture content
tstep=64
tsathigh=60
while tstep>0.05:
told = tsathigh
tsathigh=tsathigh-tstep
gsat=g(tsathigh,100)
if gsat<mc:
tsathigh=told
tstep=tstep/2
tsat=tsathigh
return tsat
def pss(t):
#Calculates the saturated vapour pressure (kPa) given the air temperature
if t>=0:
suf = 30.59051 - 8.2 * math.log10(t + 273.16) + 0.0024804 * (t + 273.16)
suf = suf - 3142.31 / (t + 273.16)
pss = 10 ** suf
else:
suf = 9.5380997 - 2663.91 / (t + 273.15)
pss = 10 ** suf
return pss
def gss(fs, pss):
#calculates moisture content of saturated vapour
gss = 0.62197 * fs * pss / (101.325 - fs * pss)
return gss
def fs(dbt):
#provides necessary interaction coefficients
if dbt < 11:
fs = -7.3E-06 * (dbt + 273.15) + 1.00444
elif dbt >= 11 and dbt < 26:
fs = 1.32E-05 * (dbt + 273.15) + 1.004205
elif dbt >= 26 and dbt <= 60:
fs = 4.05E-05 * (dbt + 273.15) + 1.003497
return fs
def ps(g):
#calculates the vapour pressure of air at a given moisture content
ps=101.325*g/(0.622+g)
return ps
def rh(g,dbt):
#calculates rh given the moisture content and dry bulb tempature
rh=100*(ps(g)/pss(dbt))
return rh
def pvap(tdry, twet, screen):
#calculates the partial pressure of water vapour mixed with dry air (Pa),
#given dry-bulb and wet-bulb/screen temperature
if twet >= 0 and screen == True:
corr = 7.99
if twet < 0 and screen == True:
corr = 7.2
if twet < 0 and screen == False:
corr = 5.94
else:
corr = 6.66
pssw = pss(twet)
pvap = pssw - 101.325 * corr * 10**-4 * (tdry - twet)
return pvap
def g_dry_wet(dbt,twet):
#calculates moisture content, given the dry and wet bulb temperatures
pst=10*pvap(dbt,twet,False)
mc = (0.62197 * fs(dbt) * pst / (1013.25 - fs(dbt) * pst))
return mc
def twetrh(tdry, rh, screen):
#Calculates wet bulb or screen temperature (oC) given the dry bulb temperature and RH
psuper = pss(tdry)
Tstep = 64
twet = tdry
while Tstep > 0.25:
Told = twet
twet = twet - Tstep
ps = pvap(tdry, twet, screen)
rhtwet = 100 * ps / psuper
if rhtwet < rh:
twet = Told
Tstep = Tstep / 2
twetrh = twet
return twetrh
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
# THIS FUNCTION CALCULATE THE GROUND TEMPERATURE
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
def Tground(t_mean,t_swing,cum_monthdaynum,dayofminmean,depth):
#Eq 2 in: Labs, K. "Regional analysis of ground and above-ground climate conclusion",
#Underground Space Vol.7 pp037-65, 1982
#approx ground thermophysical properties
Conductivity = 1.21
Density = 1960
Cp = 840
Diff = 8.64*10**4*Conductivity/(Density*Cp)#m^2/day
Decrement = math.exp(-depth*(pi/(365*Diff))**0.5)
Lag = 0.5*(365/(pi*Diff))**0.5
Tground = t_mean - t_swing*Decrement*math.cos(2*pi*(cum_monthdaynum-dayofminmean-depth*Lag)/365)
return Tground
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
# FUNCTIONS TO CALCULATE THE POSITION OF THE SUN
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
#Exception handling for arcsine and arccosine functions: only necessary
#when using exclusively solar time
def arccos(x):
if x>=1:
arccos=0
elif x<=-1:
arccos= pi
else:
arccos = math.atan(-x / (-x * x + 1)**0.5) + 2 * math.atan(1)
return arccos
def arcsin(x):
if x >= 1:
arcsin = pi / 2
elif x <= -1:
arcsin = -pi / 2
else:
arcsin = math.atan(x / (-x * x + 1)**0.5)
return arcsin
#Calculates the sunrise and sunset times
def sunrise_time(dec, lat, jday):
DL = daylength(dec,lat)
SStime = 12+DL/2
SRtime = 12-DL/2
return SStime, SRtime
#def sunrise_time(dec, lat, jday):
# day_length=max(0,daylength(lat,dec))
# SStime = min(24,(12+day_length/2)+time_diff(longitude,timezone,jday))
# SRtime = max(1,SStime-day_length)
# return SStime, SRtime
#this function calculates the declination angle in radians
def declin_angle(jday):
tau = 2*pi*(jday-1)/365
declin_angle = 0.006918 - 0.399912 * math.cos(tau) + 0.070257 * math.sin(tau) - 0.006758 * math.cos(2 * tau) + 0.000907 * math.sin(2 * tau) - 0.002697 * math.cos(3 * tau) + 0.00148 * math.sin(3 * tau)
return declin_angle
#this function calculates the solar altitude in radians
def solar_altitude(jday, hour, latitude, Declin):
Hourangle = pi * hour / 12
solar_altitude = arcsin(math.sin(latitude) * math.sin(Declin) - math.cos(latitude) * math.cos(Declin) * math.cos(Hourangle))
if solar_altitude < 0:
solar_altitude = 0
return solar_altitude
#this function calculates the solar azimuth
def solar_azimuth(jday, hour, latitude, solalt, declin):
Hourangle = pi * hour / 12
if Hourangle < pi:
solar_azimuth = arccos((-math.sin(latitude) * math.sin(solalt) + math.sin(declin)) / (math.cos(latitude) * math.cos(solalt)))
else:
solar_azimuth = ((2 * pi) - arccos((-math.sin(latitude) * math.sin(solalt) + math.sin(declin)) / (math.cos(latitude) * math.cos(solalt))))
return solar_azimuth
#this function calculates the cosine of the angle of incidence on a tilted plane
def cai(wallaz, tilt, solalt, solaz):
wallsolaz = math.fabs(solaz-wallaz)
CAI = math.cos(solalt)*math.cos(wallsolaz)*math.sin(tilt)+math.sin(solalt)*math.cos(tilt)
if CAI<0:
CAI=0
return CAI
#this function calculates the difference between solar time and clock time
def time_diff(jday, EqTonly, longitude, timezone, timeshift):
B = 2 * pi * (jday-1)/365
#The term on the left below, converts from radians, through degrees, to minutes: Earth takes 4minutes to rotate one degree.
EqT = (4*180/pi) * (0.000075 + 0.001868 * math.cos(B) - 0.032077 * math.sin(B) - 0.014615 * math.cos(2 * B) - 0.040849 * math.sin(2 * B))
if EqTonly==False:
#NB: timeshift accounts for the climate file time convention: hour-centred corresponds to +/-30mins
deltaT = 4 * longitude - 60 * timezone + (60*timeshift) + EqT
else:
deltaT = EqT
#conversion to hours:
time_diff = deltaT / 60
return time_diff
#this function calculates the number of hours that the sun is above the horizon
def daylength(dec, lat):
daylength=24*arccos(-math.tan(lat)*math.tan(dec))/pi
return daylength
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
# FUNCTION TO CALCULATE THE INCIDENT GLOBAL IRRADIANCE
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
#this function calculates incident irradiance, for either an isotropic or an anisotropic sky
def igbeta(jday, cai, igh, idh, solalt, tilt, isotropic, DiffuseOnly):
if solalt>0:
ibn=(igh-idh)/math.sin(solalt)
else:
ibn=0
if isotropic==True:
idbeta=idh*(1+math.cos(tilt))/2
else:
idbeta=0
if idh>0:
idbeta=idh_perez(jday, cai, solalt, idh, ibn, tilt)
if DiffuseOnly==True:
igbeta=idbeta
else:
iground=igh*groundref*(1-math.cos(tilt))/2
ibbeta=ibn*cai
igbeta=ibbeta+idbeta+iground
return igbeta
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
# FUNCTIONS TO CALCULATE THE INCIDENT DIFFUSE / GLOBAL ILLUMINANCE / IRRADIANCE
#XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX########
#This calculates the luminous efficacy
def LumEff(globaleff, jday, solalt, idh, ibn):
amc = 2
brightness = PerezBrightness(jday, solalt, idh)
clearness = PerezClearness(solalt, idh, ibn)
LumEff = LumEffCoeffs(globaleff, clearness, amc, solalt, brightness)
return LumEff
def LumEffCoeffs(globaleff, clearness, amc, solalt, brightness):
if globaleff == True:
LA_list = [96.6251, 107.5371, 98.7277, 92.721, 86.7266, 88.3516, 78.624, 99.6452]
LB_list = [-0.4703, 0.7866, 0.6972, 0.5591, 0.9763, 1.3891, 1.4699, 1.8569]
LC_list = [11.501, 1.7899, 4.4046, 8.3579, 7.1033, 6.0641, 4.9305, -4.4555]
LD_list = [9.1555, -1.1892, -6.9483, -8.3063, -10.9361, -7.5967, -11.3703, -3.1465]
else:
LA_list = [97.2375, 107.2129, 104.996, 102.3945, 100.71, 106.42, 141.88, 152.23]
LB_list = [-0.4597, 1.1508, 2.9605, 5.589, 5.94, 3.83, 1.9, 0.35]
LC_list = [11.962, 0.584, -5.5334, -13.951, -22.75, -36.15, -53.24, -45.27]
LD_list = [-8.9149, -3.949, -8.7793, -13.9052, -23.74, -28.83, -14.03, -7.98]
LumEff = LA_list[clearness-1]+LB_list[clearness-1]*amc+LC_list[clearness-1]*math.sin(solalt)+LD_list[clearness-1]*math.log(brightness)
return LumEff
#this function calculates the Perez Clearness number, for use in the Perz Coefficients function
def PerezClearness(solalt, idh, ibn):
ThetaZ=((pi/2)-solalt)*180/pi
clearness = (((idh + ibn) / idh) + 5.535 * 10 ** -6 * ThetaZ ** 3) / (1 + 5.535 * 10 ** -6 * ThetaZ ** 3)
if (1 <= clearness) and (clearness < 1.065):
PerezClearness = 1
elif (1.065 < clearness) and (clearness < 1.23):
PerezClearness = 2
elif (1.23 < clearness) and (clearness < 1.5):
PerezClearness = 3
elif (1.5 < clearness) and (clearness < 1.95):
PerezClearness = 4
elif (1.95 < clearness) and (clearness < 2.8):
PerezClearness = 5
elif (2.8 < clearness) and (clearness < 4.5):
PerezClearness = 6
elif (4.5 < clearness) and (clearness < 6.2):
PerezClearness = 7
else:
PerezClearness = 8
return PerezClearness
#Calculates the Perez brightness coefficient
def PerezBrightness(jday, solalt, idh):
IextraT = 1367*(1+0.033*math.cos((360*jday/365)*pi/180))
airmass = 1 / math.sin(solalt)
PerezBrightness = airmass*idh/IextraT
return PerezBrightness
#this function calculates the Perez coefficients for use in the Perez tilted surface model
def PerezCoefficients(clearness):
F11_list = [-0.0083, 0.1299, 0.3297, 0.5682, 0.873, 1.1326, 1.0602, 0.6777]
F12_list = [0.5877, 0.6826, 0.4869, 0.1875, -0.392, -1.2367, -1.5999, -0.3273]
F13_list = [-0.0621, -0.1514, -0.2211, -0.2951, -0.3616, -0.4118, -0.3589, -0.2504]
F21_list = [-0.0596, -0.0189, 0.0554, 0.1089, 0.2256, 0.2878, 0.2642, 0.1561]
F22_list = [0.0721, 0.066, -0.064, -0.1519, -0.462, -0.823, -1.1272, -1.3765]
F23_list = [-0.022, -0.0289, -0.0261, -0.014, 0.0012, 0.0559, 0.1311, 0.2506]
F11 = F11_list[clearness-1]
F12 = F12_list[clearness-1]
F13 = F13_list[clearness-1]
F21 = F21_list[clearness-1]
F22 = F22_list[clearness-1]
F23 = F23_list[clearness-1]
return F11, F12, F13, F21, F22, F23
#these functions calculates diffuse irradiance on a tilted plane using the Perez model
def idh_perez(jday, cai, solalt, idh, ibn, tilt):
if solalt<(5*pi/180):
solalt=5*pi/180
F11, F12, F13, F21, F22, F23 = PerezCoefficients(PerezClearness(solalt, idh, ibn))
thetaz = (pi/2)-solalt
brightness = PerezBrightness(jday, solalt, idh)
F1 = F11+F12*brightness+F13*thetaz
if F1 < 0:
F1 = 0
F2 = F21+F22*brightness + F23*thetaz
a1 = math.sin(solalt)
if a1<math.sin(5*pi/180):
a1=math.sin(5*pi/180)
idh_perez = idh*((1-F1)*(1+math.cos(tilt))/2+F1*cai/a1+F2*math.sin(tilt))
return idh_perez