forked from hls4ml-testing/hls4ml-test
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_qkeras_vivado.py
77 lines (59 loc) · 2.22 KB
/
test_qkeras_vivado.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import pytest
import string
import numpy as np
from qkeras import *
from tensorflow.keras.layers import Input
import hls4ml
from utils import vivado_hls
# xc7k70tl-fbv676-2L
# xc7a12ti-csg325-1L
# xc7a12tl-csg325-2L
# xa7a35t-csg325-1I
# xc7z020-clg484-2
# xa7z010-clg225-1I
# xc7s50-fgga484-2
# xa7s6-cpga196-1I
error=15
# ternary_tanh
qactivation_list = ['quantized_relu', 'quantized_tanh', 'binary_tanh', 'quantized_bits']
qactivation_stochastic_kernel = ['stochastic_ternary', 'stochastic_binary']
qactivation_stochastic_bias = ['ternary', 'binary']
quantized_bit_list = ['2', '3', '4', '5', '6', '7', '8']
quantized_integer_list = ['0', '1']
@pytest.mark.parametrize('activation_int', quantized_integer_list)
@pytest.mark.parametrize('activation_bit', quantized_bit_list)
def test_dense(activation_bit, activation_int):
x = x_in = Input(10)
x = QDense(
16,
kernel_quantizer='quantized_bits(' + activation_bit + ',' + activation_int + ',1)',
bias_quantizer='quantized_bits(' + activation_bit + ')',
name='Qdense',
)(x)
x = QActivation('quantized_relu')(x)
model = Model(inputs=x_in, outputs=x)
# w=np.random.randn(10,16)
# b=np.random.randn(16)
# model.set_weights([w,b])
vivado_hls(model,10,10,error)
@pytest.mark.parametrize('activation_kernel', qactivation_stochastic_kernel)
@pytest.mark.parametrize('activation_bias', qactivation_stochastic_bias)
def test_dense_stochastic(activation_kernel, activation_bias):
test_input=np.random.randn(1,10)
x = x_in = Input(10)
x = QDense(10, kernel_quantizer=activation_kernel, bias_quantizer=activation_bias, name='Qdense',)(x)
x = QActivation('quantized_relu')(x)
model = Model(inputs=x_in, outputs=x)
# w=np.random.randn(10,10)
# b=np.random.randn(10)
# model.set_weights([w,b])
vivado_hls(model,10,10,error)
@pytest.mark.parametrize('activation', qactivation_list)
def test_activation(activation):
test_input=np.random.randn(1,10)
x = x_in = Input(10)
x = QDense(10, kernel_quantizer='quantized_bits(3,0,1)', bias_quantizer='quantized_bits(3)', name='Qdense',)(x)
x = QActivation(activation)(x)
model = Model(inputs=x_in, outputs=x)
vivado_hls(model,10,10,error)