Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network #38

Open
guanfuchen opened this issue Dec 1, 2018 · 0 comments

Comments

@guanfuchen
Copy link
Owner

related paper

摘要
We introduce a light-weight, power efficient, and general purpose convolutional neural network, ESPNetv2 , for modeling visual and sequential data. Our network uses group point-wise and depth-wise dilated separable convolutions to learn representations from a large effective receptive field with fewer FLOPs and parameters. The performance of our network is evaluated on three different tasks: (1) object classification, (2) semantic segmentation, and (3) language modeling. Experiments on these tasks, including image classification on the ImageNet and language modeling on the PenTree bank dataset, demonstrate the superior performance of our method over the state-of-the-art methods. Our network has better generalization properties than ShuffleNetv2 when tested on the MSCOCO multi-object classification task and the Cityscapes urban scene semantic segmentation task. Our experiments show that ESPNetv2 is much more power efficient than existing state-of-the-art efficient methods including ShuffleNets and MobileNets. Our code is open-source and available at https://github.com/sacmehta/ESPNetv2.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant