forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_operators.py
1312 lines (1092 loc) · 45.8 KB
/
test_operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: onnx"]
"""
Usage: python test/onnx/test_operators.py [--no-onnx] [--produce-onnx-test-data]
--no-onnx: no onnx python dependency
--produce-onnx-test-data: generate onnx test data
--accept: accept onnx updates and overwrite models
"""
import glob
import inspect
import io
import itertools
import operator
import os
import shutil
import tempfile
# Full diff for expect files
import unittest
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.onnx
from pytorch_test_common import (
BATCH_SIZE,
flatten,
RNN_HIDDEN_SIZE,
RNN_INPUT_SIZE,
RNN_SEQUENCE_LENGTH,
)
from torch.autograd import Function, Variable
from torch.nn import functional, Module
from torch.onnx._internal import diagnostics
from torch.onnx.symbolic_helper import (
_get_tensor_dim_size,
_get_tensor_sizes,
parse_args,
)
from torch.testing._internal import common_utils
from torch.testing._internal.common_utils import skipIfCaffe2, skipIfNoLapack
unittest.TestCase.maxDiff = None
_onnx_test = False # flag to produce onnx test cases.
_onnx_dep = True # flag to import onnx package.
def export_to_pbtxt(model, inputs, *args, **kwargs):
return torch.onnx.export_to_pretty_string(
model, inputs, *args, google_printer=True, **kwargs
)
def export_to_pb(model, inputs, *args, **kwargs):
f = io.BytesIO()
with torch.no_grad():
torch.onnx.export(model, inputs, f, *args, **kwargs)
return f.getvalue()
class FuncModule(Module):
def __init__(self, f, params=None):
if params is None:
params = ()
super().__init__()
self.f = f
self.params = nn.ParameterList(list(params))
def forward(self, *args):
return self.f(*itertools.chain(args, self.params))
class TestOperators(common_utils.TestCase):
def setUp(self):
super().setUp()
diagnostics.engine.clear()
def assertONNX(self, f, args, params=None, **kwargs):
if params is None:
params = ()
if isinstance(f, nn.Module):
m = f
else:
m = FuncModule(f, params)
m.eval()
onnx_model_pbtxt = export_to_pbtxt(m, args, **kwargs)
subname = kwargs.pop("subname", None)
self.assertExpected(onnx_model_pbtxt, subname)
if _onnx_dep:
onnx_model_pb = export_to_pb(m, args, **kwargs)
import onnx
import onnx.checker
import onnx.numpy_helper
import onnx_test_common
model_def = onnx.ModelProto.FromString(onnx_model_pb)
onnx.checker.check_model(model_def)
if _onnx_test:
test_function = inspect.stack()[1][0].f_code.co_name
test_name = test_function[0:4] + "_operator" + test_function[4:]
output_dir = os.path.join(
onnx_test_common.pytorch_operator_dir, test_name
)
# Assume:
# 1) the old test should be delete before the test.
# 2) only one assertONNX in each test, otherwise will override the data.
assert not os.path.exists(output_dir), f"{output_dir} should not exist!"
os.makedirs(output_dir)
with open(os.path.join(output_dir, "model.onnx"), "wb") as file:
file.write(model_def.SerializeToString())
data_dir = os.path.join(output_dir, "test_data_set_0")
os.makedirs(data_dir)
if isinstance(args, Variable):
args = (args,)
for index, var in enumerate(flatten(args)):
tensor = onnx.numpy_helper.from_array(var.data.numpy())
with open(
os.path.join(data_dir, f"input_{index}.pb"), "wb"
) as file:
file.write(tensor.SerializeToString())
outputs = m(*args)
if isinstance(outputs, Variable):
outputs = (outputs,)
for index, var in enumerate(flatten(outputs)):
tensor = onnx.numpy_helper.from_array(var.data.numpy())
with open(
os.path.join(data_dir, f"output_{index}.pb"), "wb"
) as file:
file.write(tensor.SerializeToString())
def assertONNXRaises(self, err, f, args, params=None, **kwargs):
if params is None:
params = ()
if isinstance(f, nn.Module):
m = f
else:
m = FuncModule(f, params)
self.assertExpectedRaises(err, lambda: export_to_pbtxt(m, args, **kwargs))
def assertONNXRaisesRegex(self, err, reg, f, args, params=None, **kwargs):
if params is None:
params = ()
if isinstance(f, nn.Module):
m = f
else:
m = FuncModule(f, params)
with self.assertRaisesRegex(err, reg):
export_to_pbtxt(m, args, **kwargs)
def test_basic(self):
x = torch.tensor([0.4], requires_grad=True)
y = torch.tensor([0.7], requires_grad=True)
self.assertONNX(lambda x, y: -torch.sigmoid(torch.tanh(x * (x + y))), (x, y))
def test_view(self):
x = torch.tensor([0.0], requires_grad=True)
self.assertONNX(lambda x: x.view(1, 1), x)
def test_index(self):
x = torch.tensor([[0.0]], requires_grad=True)
self.assertONNX(lambda x: x[0], x)
def test_type_as(self):
x = torch.tensor([0.0], requires_grad=True)
self.assertONNX(lambda x: x.type_as(x), x)
def test_addconstant(self):
x = torch.randn(2, 3, requires_grad=True).double()
self.assertONNX(lambda x: x + 1, x)
def test_add_broadcast(self):
x = torch.randn(2, 3, requires_grad=True).double()
y = torch.randn(3, requires_grad=True).double()
self.assertONNX(operator.add, (x, y))
def test_add_left_broadcast(self):
x = torch.randn(3, requires_grad=True).double()
y = torch.randn(2, 3, requires_grad=True).double()
self.assertONNX(operator.add, (x, y))
def test_add_size1_broadcast(self):
x = torch.randn(2, 3, requires_grad=True).double()
y = torch.randn(2, 1, requires_grad=True).double()
self.assertONNX(operator.add, (x, y))
def test_add_size1_right_broadcast(self):
x = torch.randn(2, 3, requires_grad=True).double()
y = torch.randn(3, requires_grad=True).double()
self.assertONNX(operator.add, (x, y))
def test_add_size1_singleton_broadcast(self):
x = torch.randn(2, 3, requires_grad=True).double()
y = torch.randn(1, 3, requires_grad=True).double()
self.assertONNX(operator.add, (x, y))
def test_rsub(self):
x = torch.randn(2, 3, requires_grad=True).double()
self.assertONNX(lambda x: 1 - x, (x,))
def test_mul_bool(self):
x = torch.tensor([True, False, True, False])
y = torch.tensor([True, True, False, False])
self.assertONNX(lambda x, y: torch.mul(x, y), (x, y))
def test_mul_fp_bool(self):
x = torch.tensor([9.4, 1.7, 3.6])
y = torch.tensor([True, True, False])
self.assertONNX(lambda x, y: torch.mul(x, y), (x, y))
def test_transpose(self):
x = torch.tensor([[0.0, 1.0], [2.0, 3.0]], requires_grad=True)
self.assertONNX(lambda x: x.transpose(0, 1).transpose(1, 0), x)
def test_chunk(self):
x = torch.tensor([0.0, 1.0, 2.0], requires_grad=True)
self.assertONNX(lambda x: x.chunk(2), x)
def test_split(self):
x = torch.tensor(
[[0.0, 1.0, 1.0, 0.0, 2.0, 2.0], [2.0, 3.0, 3.0, 2.0, 1.0, 1.0]]
)
self.assertONNX(lambda x: torch.split(x, 2, 1), x)
def test_split_with_sizes(self):
x = torch.tensor(
[[0.0, 1.0, 1.0, 0.0, 2.0, 2.0], [2.0, 3.0, 3.0, 2.0, 1.0, 1.0]]
)
self.assertONNX(lambda x: torch.split(x, [2, 1, 3], 1), x)
def test_concat2(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
self.assertONNX(lambda inputs: torch.cat(inputs, 1), ((x, y),))
def test_mm(self):
m1 = torch.randn(2, 3, requires_grad=True)
m2 = torch.randn(3, 4, requires_grad=True)
self.assertONNX(torch.mm, (m1, m2))
def test_addmm(self):
m1 = torch.randn(2, 3, requires_grad=True)
m2 = torch.randn(3, 4, requires_grad=True)
m3 = torch.randn(4, requires_grad=True)
self.assertONNX(
lambda x, y, z: torch.addmm(torch.addmm(z, x, y), x, y), (m1, m2, m3)
)
def test_permute2(self):
x = torch.tensor([[[[[[0.0]]]]]], requires_grad=True)
self.assertONNX(lambda x: x.permute(0, 1, 4, 2, 5, 3), x)
def test_pad(self):
x = torch.tensor(
[[[[0.0, 1.0, 1.0, 1.0], [2.0, 3.0, 7.0, 7.0]]]], requires_grad=True
)
self.assertONNX(nn.ReflectionPad2d((2, 3, 0, 1)), x)
def test_params(self):
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
y = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True))
self.assertONNX(
lambda x, y: -torch.sigmoid(torch.tanh(x * (x + y))),
x,
params=(y,),
keep_initializers_as_inputs=True,
)
def test_params_onnx_irv4(self):
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
y = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True))
self.assertONNX(
lambda x, y: -torch.sigmoid(torch.tanh(x * (x + y))),
x,
params=(y,),
keep_initializers_as_inputs=False,
)
def test_symbolic_mismatch(self):
class MyFun(Function):
@staticmethod
def symbolic(g, x):
# The inside of this function should never be invoked, because
# we will fail due to an argument mismatch first.
raise AssertionError()
@staticmethod
def forward(ctx, x, y):
return x + y
x = torch.ones(2, 2)
y = torch.ones(2, 2)
# NB: Don't use expect test here, the type error wobbles depending
# on Python version
with self.assertRaisesRegex(TypeError, "occurred when translating MyFun"):
export_to_pbtxt(FuncModule(MyFun().apply), (x, y))
# TODO: Do an nn style test for these
def test_batchnorm(self):
x = torch.ones(2, 2, 2, 2, requires_grad=True)
self.assertONNX(nn.BatchNorm2d(2), x, keep_initializers_as_inputs=True)
def test_batchnorm_onnx_irv4(self):
x = torch.ones(2, 2, 2, 2, requires_grad=True)
self.assertONNX(nn.BatchNorm2d(2), x)
def test_batchnorm_1d(self):
x = torch.ones(2, 2, requires_grad=True)
self.assertONNX(nn.BatchNorm1d(2), x, keep_initializers_as_inputs=True)
def test_batchnorm_training(self):
x = torch.ones(2, 2, 2, 2, requires_grad=True)
self.assertONNX(
nn.BatchNorm2d(2),
x,
training=torch.onnx.TrainingMode.TRAINING,
keep_initializers_as_inputs=True,
)
def test_conv(self):
x = torch.ones(20, 16, 50, 40, requires_grad=True)
self.assertONNX(
nn.Conv2d(16, 13, 3, bias=False), x, keep_initializers_as_inputs=True
)
def test_conv_onnx_irv4(self):
x = torch.ones(20, 16, 50, 40, requires_grad=True)
self.assertONNX(nn.Conv2d(16, 13, 3, bias=False), x)
def test_conv_onnx_irv4_opset8(self):
# This test point checks that for opset 8 (or lower), even if
# keep_initializers_as_inputs is set to False, it is ignored,
# and initializers are listed as ONNX graph input, in accordance
# with ONNX IR v3 semantics (which apply to opset version <= 8).
x = torch.ones(1, 2, 5, 7, requires_grad=True)
conv_node = nn.Conv2d(2, 4, 3, bias=False)
conv_node.weight.data.fill_(1.0)
self.assertONNX(
conv_node, x, opset_version=8, keep_initializers_as_inputs=False
)
def test_conv_variable_length(self):
x = torch.ones(5, 3, 6, 6, requires_grad=True)
model = torch.nn.Conv2d(3, 2, 3)
dynamic_axes = {
"input_1": [0, 2, 3],
"output_1": {0: "output_1_variable_dim_0", 1: "output_1_variable_dim_1"},
}
model_proto_file = tempfile.NamedTemporaryFile()
torch.onnx.export(
model,
x,
model_proto_file.name,
verbose=True,
input_names=["input_1"],
output_names=["output_1"],
dynamic_axes=dynamic_axes,
)
import onnx
onnx_model = onnx.load(model_proto_file.name)
onnx.checker.check_model(onnx_model)
# Asserting the default dynamic axes names are generated when custom names are not provided
assert (
onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_param
== "input_1_dynamic_axes_1"
)
assert (
onnx_model.graph.input[0].type.tensor_type.shape.dim[2].dim_param
== "input_1_dynamic_axes_2"
)
assert (
onnx_model.graph.input[0].type.tensor_type.shape.dim[3].dim_param
== "input_1_dynamic_axes_3"
)
# Asserting the custom names are applied when provided
assert (
onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_param
== "output_1_variable_dim_0"
)
assert (
onnx_model.graph.output[0].type.tensor_type.shape.dim[1].dim_param
== "output_1_variable_dim_1"
)
def test_convtranspose(self):
x = torch.ones(2, 3, 4, 5, requires_grad=True)
self.assertONNX(
nn.ConvTranspose2d(
3, 3, 3, stride=3, bias=False, padding=1, output_padding=2
),
x,
keep_initializers_as_inputs=True,
)
def test_maxpool(self):
x = torch.randn(20, 16, 50)
self.assertONNX(nn.MaxPool1d(3, stride=2), x)
def test_maxpool_dilations(self):
x = torch.randn(20, 16, 50)
self.assertONNX(nn.MaxPool1d(2, stride=1, dilation=2), x, opset_version=10)
def test_avg_pool2d(self):
x = torch.randn(20, 16, 50, 32)
self.assertONNX(nn.AvgPool2d(3, stride=2), x)
def test_maxpool_indices(self):
x = torch.randn(20, 16, 50)
self.assertONNX(nn.MaxPool1d(3, stride=2, return_indices=True), x)
@skipIfCaffe2
def test_at_op(self):
x = torch.randn(3, 4)
class MyFun(Function):
@staticmethod
def symbolic(g, x):
return g.at("add", x, x)
@staticmethod
def forward(ctx, x):
return x + x
class MyModule(Module):
def forward(self, x):
return MyFun.apply(x)
self.assertONNX(
MyModule(),
x,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
def test_clip(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.clamp(x, min=-0.5, max=0.5), x)
def test_clip_min(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.clamp(min=-0.1), x)
def test_clip_max(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.clamp(max=0.1), x)
def test_hardtanh(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.nn.Hardtanh(-0.5, 0.5)(x), x)
def test_full(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.full(x.shape, 2.0), x)
def test_full_like(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.full_like(x, 2), x)
def test_max(self):
x = torch.randn(3, 4, requires_grad=True)
y = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x, y: torch.max(x, y), (x, y))
def test_min(self):
x = torch.randn(3, 4, requires_grad=True)
y = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x, y: torch.min(x, y), (x, y))
def test_mean(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.mean(x), x)
def test_reduced_mean(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.mean(x, dim=2), x)
def test_reduced_mean_keepdim(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.mean(x, dim=(2, 3), keepdim=True), x)
def test_mean_dtype(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.mean(x, dtype=torch.double), x)
def test_reduced_mean_dtype(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.mean(x, dim=0, dtype=torch.double), x)
def test_sum(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.sum(x), x)
def test_sum_dtype(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.sum(x, dtype=torch.double), x)
def test_reduced_sum_dtype(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.sum(x, dim=0, dtype=torch.double), x)
def test_reduced_sum(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.sum(x, dim=(1, 2)), x)
def test_reduced_sum_keepdim(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.sum(x, dim=2, keepdim=True), x)
def test_prod(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.prod(x), x)
def test_reduced_prod(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.prod(x, dim=2), x)
def test_reduced_prod_keepdim(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.prod(x, dim=2, keepdim=True), x)
def test_prod_dtype(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.prod(x, dtype=torch.double), x)
def test_reduced_prod_dtype(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.prod(x, dim=0, dtype=torch.double), x)
def test_sqrt(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.sqrt(x), x)
def test_rsqrt(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.rsqrt(x), x)
def test_equal(self):
x = torch.randn(1, 2, 3, 1, requires_grad=False).int()
y = torch.randn(1, 4, requires_grad=False).int()
self.assertONNX(operator.eq, (x, y))
def test_lt(self):
x = torch.randn(1, 2, 3, 1, requires_grad=False).int()
y = torch.randn(1, 4, requires_grad=False).int()
self.assertONNX(operator.lt, (x, y))
def test_gt(self):
x = torch.randn(1, 2, 3, 1, requires_grad=False).int()
y = torch.randn(1, 4, requires_grad=False).int()
self.assertONNX(operator.gt, (x, y))
def test_le(self):
x = torch.randn(3, 4, requires_grad=False).int()
y = torch.randn(3, 4, requires_grad=False).int()
self.assertONNX(operator.le, (x, y))
def test_ge(self):
x = torch.randn(3, 4, requires_grad=False).int()
y = torch.randn(3, 4, requires_grad=False).int()
self.assertONNX(operator.ge, (x, y))
def test_exp(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.exp(), x)
def test_sin(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.sin(), x)
def test_cos(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.cos(), x)
def test_tan(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.tan(), x)
def test_asin(self):
x = torch.rand(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.asin(), x)
def test_acos(self):
x = torch.rand(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.acos(), x)
def test_slice(self):
x = torch.rand(3, 4, requires_grad=True)
self.assertONNX(lambda x: x[:, 1:2], x)
def test_slice_dynamic(self):
x = torch.rand(3, 4, requires_grad=True)
self.assertONNX(lambda x: x[x.size(0) :, x.size(1) - 3], x, opset_version=10)
def test_sign(self):
x = torch.rand(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.sign(), x)
def test_narrow(self):
x = torch.randn(3, 3, requires_grad=True)
self.assertONNX(lambda x: torch.narrow(x, 0, 0, 2), x)
def test_atan(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.atan(), x)
def test_view_flatten(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.view(x.size()[0], x.numel() // x.size()[0]), x)
def test_flatten(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.flatten(x), x)
def test_flatten2D(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.flatten(x, 1), x)
def test_isnan(self):
x = torch.tensor([1, float("nan"), 2])
self.assertONNX(lambda x: torch.isnan(x), x)
def test_argmax(self):
x = torch.randn(4, 4, requires_grad=True)
self.assertONNX(lambda x: torch.argmax(x, dim=1), x)
def test_logsoftmax(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(nn.LogSoftmax(dim=3), x)
def test_pow(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
y = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x, y: x.pow(y), (x, y))
def test_elu(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(nn.ELU(), x)
def test_selu(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(nn.SELU(), x)
def test_repeat(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.repeat(1, 2, 3, 4), x)
def test_repeat_dim_overflow(self):
x = torch.randn(1, 2, requires_grad=True)
self.assertONNX(lambda x: x.repeat(1, 2, 3, 4), x)
def test_norm_p1(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.norm(p=1, dim=2), (x))
def test_norm_p2(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.norm(p=2, dim=2), (x))
def test_upsample_nearest_scale(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(
lambda x: nn.functional.interpolate(
x, scale_factor=2.0, mode="nearest", recompute_scale_factor=False
),
x,
)
def test_upsample_nearest_scale_default_scale_factor(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(
lambda x: nn.functional.interpolate(x, scale_factor=2.0, mode="nearest"), x
)
def test_upsample_nearest_size(self):
x = torch.randn(1, 2, 3, 4, requires_grad=True)
self.assertONNX(
lambda x: nn.functional.interpolate(x, size=16, mode="nearest"), x
)
def test_unsqueeze(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.unsqueeze(len(x.shape)), x)
def test_batchnorm_noaffine(self):
x = torch.randn(128, 128, 1, 1, requires_grad=True)
self.assertONNX(
nn.BatchNorm2d(128, affine=False, momentum=0.3),
x,
keep_initializers_as_inputs=True,
)
@skipIfCaffe2
def test_embedding_bags(self):
emb_bag = nn.EmbeddingBag(10, 8)
input = torch.tensor([1, 2, 3, 4]).long()
offset = torch.tensor([0]).long()
self.assertONNX(
emb_bag,
(input, offset),
keep_initializers_as_inputs=True,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
def test_implicit_expand(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x + 1, x)
def test_reduce_sum_negative_indices(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: x.sum(-1), x)
def test_randn(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(lambda x: torch.randn(1, 2, 3, 4) + x, x)
def test_rand(self):
x = torch.rand(1, 2, 3, 4)
self.assertONNX(lambda x: torch.rand(1, 2, 3, 4) + x, x)
def test_rrelu(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(torch.nn.RReLU(), x)
def test_prelu(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(torch.nn.PReLU(2), x, keep_initializers_as_inputs=True)
def test_log_sigmoid(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(torch.nn.LogSigmoid(), x)
def test_linear(self):
x = torch.randn(3, 4)
self.assertONNX(
torch.nn.Linear(4, 5, bias=True), x, keep_initializers_as_inputs=True
)
def test_empty_like(self):
x = torch.randn(5, 8, requires_grad=True)
self.assertONNX(lambda x: torch.empty_like(x), x)
def test_zeros_like(self):
x = torch.randn(5, 8, requires_grad=True)
self.assertONNX(lambda x: torch.zeros_like(x), x)
def test_ones_like(self):
x = torch.randn(6, 10, requires_grad=True)
self.assertONNX(lambda x: torch.ones_like(x), x)
def test_expand(self):
x = torch.randn(6, 1, requires_grad=True)
self.assertONNX(lambda x: x.expand(4, 6, 2), x)
def test_ne(self):
x = torch.randn(1, 2, 3, 1, requires_grad=False).int()
y = torch.randn(1, 4, requires_grad=False).int()
self.assertONNX(lambda x, y: torch.ne(x, y), (x, y))
def test_reducemax(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(lambda x: torch.max(x), x)
def test_reducemin(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(lambda x: torch.min(x), x)
def test_erf(self):
x = torch.randn(1, 2, 3, 4)
self.assertONNX(lambda x: x.erf(), x)
def test_dropout(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.max(functional.dropout(x, training=False)), x)
def test_dropout_default(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(
lambda x: torch.max(
functional.dropout(
x,
)
),
x,
)
def test_dropout_training(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(
lambda x: torch.max(functional.dropout(x)),
x,
training=torch.onnx.TrainingMode.TRAINING,
)
def test_dropout_opset12(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(
lambda x: torch.max(functional.dropout(x, training=False)),
x,
opset_version=12,
)
def test_dropout_training_opset12(self):
x = torch.randn(3, 4, requires_grad=True)
self.assertONNX(
lambda x: torch.max(functional.dropout(x)),
x,
opset_version=12,
training=torch.onnx.TrainingMode.TRAINING,
)
def test_nonzero(self):
x = torch.tensor(
[[[2.0, 2.0], [1.0, 0.0]], [[0.0, 0.0], [1.0, 1.0]]], requires_grad=True
)
self.assertONNX(lambda x: torch.nonzero(x), x)
def test_gather(self):
data = torch.randn(3, 4, 3, requires_grad=True)
index = torch.tensor([2, 0]).view(1, 2, 1).expand(3, 2, 3)
self.assertONNX(lambda data, index: data.gather(1, index), (data, index))
def test_gather_opset11(self):
data = torch.randn(3, 4, 3, requires_grad=True)
index = torch.tensor([2, 0]).view(1, 2, 1).expand(3, 2, 3)
self.assertONNX(
lambda data, index: data.gather(1, index), (data, index), opset_version=11
)
def test_scatter_add(self):
data = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64)
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
self.assertONNX(
lambda data, index: data.scatter_add(1, indices, values),
(data, (indices, values)),
)
def test_scatter_add_opset11(self):
data = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
indices = torch.tensor([[1, 0], [0, 1], [0, 1]], dtype=torch.int64)
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
self.assertONNX(
lambda data, index: data.scatter_add(1, indices, values),
(data, (indices, values)),
opset_version=11,
)
def test_scatter_add_opset16(self):
data = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
indices = torch.tensor([[0, 0], [1, 1], [0, 1]], dtype=torch.int64)
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
self.assertONNX(
lambda data, index: data.scatter_add(1, indices, values),
(data, (indices, values)),
opset_version=16,
)
def test_master_opset(self):
x = torch.randn(2, 3).float()
y = torch.randn(2, 3).float()
self.assertONNX(operator.add, (x, y), opset_version=10)
def test_std(self):
x = torch.randn(2, 3, 4).float()
self.assertONNX(
lambda x: torch.std(x, dim=(0, 1), unbiased=True, keepdim=True), x
)
def test_cumsum(self):
x = torch.randn(2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: torch.cumsum(x, dim=1), x, opset_version=11)
# Github Issue: https://github.com/pytorch/pytorch/issues/71095
# def test_c2_op(self):
# class MyModel(torch.nn.Module):
# def __init__(self):
# super().__init__()
#
# def forward(self, scores, bbox_deltas, im_info, anchors):
# a, b = torch.ops._caffe2.GenerateProposals(
# (scores), (bbox_deltas), (im_info), (anchors),
# 2.0, 6000, 300, 0.7, 16, True, -90, 90, 1.0, True,
# )
# return a, b
#
# model = MyModel()
# A = 4
# H = 10
# W = 8
# img_count = 3
# scores = torch.ones(img_count, A, H, W, dtype=torch.float32)
# bbox_deltas = torch.linspace(0, 10, steps=img_count * 4 * A * H * W,
# dtype=torch.float32)
# bbox_deltas = bbox_deltas.view(img_count, 4 * A, H, W)
# im_info = torch.ones(img_count, 3, dtype=torch.float32)
# anchors = torch.ones(A, 4, dtype=torch.float32)
# inputs = (scores, bbox_deltas, im_info, anchors)
# self.assertONNX(model, inputs, custom_opsets={"org.pytorch._caffe2": 0})
def test_dict(self):
class MyModel(torch.nn.Module):
def forward(self, x_in):
x_out = {}
x_out["test_key_out"] = torch.add(
x_in[list(x_in.keys())[0]], list(x_in.keys())[0] # noqa: RUF015
)
return x_out
x = {torch.tensor(1.0): torch.randn(1, 2, 3)}
self.assertONNX(MyModel(), (x, {}))
def test_dict_str(self):
class MyModel(torch.nn.Module):
def forward(self, x_in):
x_out = {}
x_out["test_key_out"] = torch.add(x_in["test_key_in"], 2.0)
return x_out
x = {"test_key_in": torch.randn(1, 2, 3)}
self.assertONNX(MyModel(), (x, {}))
def test_arange_dynamic(self):
class TestModel(torch.nn.Module):
def forward(self, input):
return torch.arange(input.shape[0], input.shape[0] + 5, 0.5)
input = torch.randn(5, 3, 2)
self.assertONNX(TestModel(), input, opset_version=11)
def test_bitshift(self):
class BitshiftModel(torch.nn.Module):
def forward(self, input):
return input >> 1, input >> 2
input = torch.arange(24, dtype=torch.uint8).reshape(3, 4, 2)
self.assertONNX(BitshiftModel(), input, opset_version=11)
@skipIfCaffe2
def test_layer_norm_aten(self):
model = torch.nn.LayerNorm([10, 10])
x = torch.randn(20, 5, 10, 10)
self.assertONNX(
model,
x,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
def test_pixel_shuffle(self):
x = torch.randn(2, 8, 3, 4).float()
self.assertONNX(
lambda x: torch.pixel_shuffle(x, upscale_factor=2), x, opset_version=11
)
def test_frobenius_norm(self):
x = torch.randn(2, 3, 4).float()
self.assertONNX(lambda x: torch.norm(x, p="fro", dim=(0, 1), keepdim=True), x)
def test_unfold(self):
x = torch.randn(2, 3, 4, requires_grad=True)
self.assertONNX(lambda x: x.unfold(dimension=2, size=2, step=2), x)
def test_remainder(self):
x = torch.randn(2, 3, 4)
y = torch.randn(2, 1, 4)
self.assertONNX(lambda x, y: torch.remainder(x, y), (x, y))
def test_fmod(self):
x = torch.randn(2, 3, 4)
y = torch.randn(2, 1, 4)
self.assertONNX(lambda x, y: torch.fmod(x, y), (x, y), opset_version=10)
def test_gelu(self):
x = torch.randn(2, 3, 4, 5, requires_grad=True)
self.assertONNX(lambda x: torch.nn.functional.gelu(x), x)
def test_unique(self):
x = torch.randint(3, (2, 3, 4, 5)).float()
self.assertONNX(
lambda x: torch.unique(
x, dim=0, sorted=True, return_inverse=False, return_counts=True
),
x,
opset_version=11,
)
def test_meshgrid(self):
x = torch.ones(3, requires_grad=True)
y = torch.zeros(4, requires_grad=True)
z = torch.ones(5, requires_grad=True)
self.assertONNX(lambda x, y, z: torch.meshgrid(x, y, z), (x, y, z))
def test_meshgrid_indexing(self):
x = torch.ones(3, requires_grad=True)
y = torch.zeros(4, requires_grad=True)
z = torch.ones(5, requires_grad=True)