-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathcollege_admission_test.py
332 lines (307 loc) · 12.1 KB
/
college_admission_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# coding=utf-8
# Copyright 2022 The ML Fairness Gym Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import absltest
import core
import params
import test_util
from agents import random_agents
from environments import college_admission
import numpy as np
class CollegeAdmissionsTest(absltest.TestCase):
def _return_individual_burden(self, env, agent):
# pylint: disable=g-complex-comprehension
return [
env.state.params.group_cost[group_id] *
(agent.default_action['threshold'] - score)
if score < agent.default_action['threshold'] else 0
for group_id, score in zip(env.state.applicant_groups,
env.state.test_scores_x)
]
def test_parties_can_interact_gaming(self):
"""Test stackelberg simulation."""
env = college_admission.CollegeAdmissionsEnv(user_params={'gaming': True})
agent = random_agents.RandomAgent(env.action_space, None,
env.observation_space)
test_util.run_test_simulation(agent=agent, env=env, stackelberg=True)
def test_parties_can_interact_no_gaming(self):
"""Test stackelberg simulation with no gaming."""
env = college_admission.CollegeAdmissionsEnv(user_params={'gaming': False})
agent = random_agents.RandomAgent(env.action_space, None,
env.observation_space)
test_util.run_test_simulation(agent=agent, env=env, stackelberg=True)
def test_manipulate_features_no_gaming(self):
"""Test features are not manipulated when gaming is off."""
env = college_admission.CollegeAdmissionsEnv(user_params={
'num_applicants': 6,
'gaming': False,
'group_cost': {
0: 3,
1: 4
}
})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
action = agent.initial_action()
_, _, _, _ = env.step(action)
env.state.test_scores_x = [0.1, 0.3, 0.6, 0.7, 0.7, 0.9]
env.state.applicant_groups = [0, 1, 1, 1, 0, 0]
env.state.true_eligible = [0, 0, 1, 1, 0, 1]
expected_changed_scores = [0.1, 0.3, 0.6, 0.7, 0.7, 0.9]
expected_individual_burden = [0] * env.state.params.num_applicants
changed_scores, individual_burden = env._manipulate_features(
env.state, action)
self.assertTrue(
np.all(np.isclose(expected_changed_scores, changed_scores, atol=1e-4)))
self.assertTrue(
np.all(
np.isclose(
individual_burden, expected_individual_burden, atol=1e-4)))
def test_manipulate_features_no_max_control(self):
"""Tests that features are manipulated as expected no gaming control."""
env = college_admission.CollegeAdmissionsEnv(
user_params={
'num_applicants': 6,
'gaming': True,
'gaming_control': np.inf,
'noise_params': params.BoundedGaussian(max=0, mu=0, min=0, sigma=0),
'group_cost': {
0: 3,
1: 4
}
})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
env.set_scalar_reward(agent.reward_fn)
action = agent.initial_action()
env.step(action)
env.state.test_scores_x = [0.1, 0.3, 0.6, 0.7, 0.7, 0.9]
env.state.applicant_groups = [0, 1, 1, 1, 0, 0]
env.state.true_eligible = [0, 0, 1, 1, 0, 1]
expected_changed_scores = [0.1, 0.3, 0.8, 0.8, 0.8, 0.9]
expected_individual_burden = self._return_individual_burden(env, agent)
changed_scores, individual_burden = env._manipulate_features(
env.state, action)
self.assertTrue(
np.all(np.isclose(expected_changed_scores, changed_scores, atol=1e-4)))
self.assertTrue(
np.all(
np.isclose(
individual_burden, expected_individual_burden, atol=1e-4)))
def test_manipulate_features_with_max_control(self):
"""Tests that features are manipulated as expected given max gaming."""
env = college_admission.CollegeAdmissionsEnv(
user_params={
'num_applicants': 6,
'noise_params': params.BoundedGaussian(max=0, mu=0, min=0, sigma=0),
'gaming': True,
'gaming_control': 0.1,
'group_cost': {
0: 3,
1: 4
}
})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
env.set_scalar_reward(agent.reward_fn)
action = agent.initial_action()
_, _, _, _ = env.step(action)
env.state.test_scores_x = [0.1, 0.3, 0.6, 0.7, 0.7, 0.9]
env.state.applicant_groups = [0, 1, 1, 1, 0, 0]
env.state.true_eligible = [0, 0, 1, 1, 0, 1]
expected_changed_scores = [0.1, 0.3, 0.6, 0.8, 0.8, 0.9]
expected_individual_burden = self._return_individual_burden(env, agent)
changed_scores, individual_burden = env._manipulate_features(
env.state, action)
self.assertTrue(
np.all(np.isclose(expected_changed_scores, changed_scores, atol=1e-4)))
self.assertTrue(
np.all(
np.isclose(
individual_burden, expected_individual_burden, atol=1e-4)))
def test_cost_fn_subsidies_cost_for_group_1_with_subsidy(self):
"""Test for groupwise cost function with and without subsidies."""
env = college_admission.CollegeAdmissionsEnv(user_params={
'subsidize': True,
'group_cost': {
0: 3,
1: 4
},
'subsidy_beta': 0.6
})
group_0_cost = env._cost_function(0.8, 0)
group_1_cost = env._cost_function(0.8, 1)
self.assertEqual(group_0_cost, 0.8 * 3)
self.assertEqual(group_1_cost, 0.8 * 0.6 * 4)
def test_cost_fn_does_not_subsidize_cost_for_group_1_with_no_subsidy(self):
env = college_admission.CollegeAdmissionsEnv(user_params={
'subsidize': False,
'group_cost': {
0: 3,
1: 4
}
})
group_1_cost = env._cost_function(0.8, 1)
group_0_cost = env._cost_function(0.8, 0)
self.assertEqual(group_0_cost, 0.8 * 3)
self.assertEqual(group_1_cost, 0.8 * 4)
def test_select_candidates(self):
"""Tests predictions by jury, given modified scores are as expected."""
env = college_admission.CollegeAdmissionsEnv(
user_params={'num_applicants': 4})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
env.set_scalar_reward(agent.reward_fn)
action = agent.initial_action()
_ = env.step(action)
env.state.test_scores_y = [0.1, 0.9, 0.8, 0.79]
env.state.true_eligible = [0, 1, 0, 1]
predictions, selected_ground_truth = env._select_candidates(
env.state, action)
self.assertEqual(list(predictions), [0, 1, 1, 0])
self.assertEqual(list(selected_ground_truth), [2, 1, 0, 2])
def test_one_sided_noise_generated_correctly(self):
env = college_admission.CollegeAdmissionsEnv(
user_params={
'num_applicants':
4,
'noise_params':
params.BoundedGaussian(min=0, max=0.3, mu=0.2, sigma=0.00001)
})
noise = env._add_noise(env.state.rng)
self.assertTrue(np.isclose(0.2, noise, atol=1e-3))
def feature_noise_propagates_to_labels(self):
env = college_admission.CollegeAdmissionsEnv(
user_params={
'num_applicants':
10,
'noise_params':
params.BoundedGaussian(min=0.5, max=0.5, mu=0, sigma=1)
})
env.state.rng = np.random.RandomState(seed=100)
env._sample_next_state_vars(env.state)
scores = np.array(env.state.test_scores_x)
eligible = np.array(env.state.true_eligible)
# Check that at least one "eligible" candidate has a lower score than an
# ineligible one.
self.assertLess(
np.min(scores[eligible == 1]), np.max(scores[eligible == 0]))
def error_raised_when_noise_params_wrong(self):
env = college_admission.CollegeAdmissionsEnv(
user_params={
'noise_params':
params.BoundedGaussian(min=0, max=0.3, mu=0, sigma=0.00001),
})
with self.assertRaises(ValueError):
env._add_noise()
def test_is_done_when_max_steps_reached(self):
env = college_admission.CollegeAdmissionsEnv(user_params={
'num_applicants': 4,
'max_steps': 8
})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
with self.assertRaises(core.EpisodeDoneError):
test_util.run_test_simulation(agent=agent, env=env, stackelberg=True)
self.assertEqual(env.state.steps, 9)
def test_candidates_less_than_threshold_allowed_epsilon_selection(self):
env = college_admission.CollegeAdmissionsEnv(user_params={'gaming': False})
env.state.test_scores_y = [0.7] * env.initial_params.num_applicants
action = {'threshold': np.array(0.8), 'epsilon_prob': np.array(0.5)}
selected_candidates, _ = env._select_candidates(env.state, action)
self.assertGreater(sum(selected_candidates), 0)
def test_candidates_less_than_threshold_not_allowed_non_epsilon_selection(
self):
env = college_admission.CollegeAdmissionsEnv(user_params={'gaming': False})
env.state.test_scores_y = [0.7] * env.initial_params.num_applicants
action = {'threshold': np.array(0.8), 'epsilon_prob': np.array(0)}
selected_candidates, _ = env._select_candidates(env.state, action)
self.assertEqual(sum(selected_candidates), 0)
def test_unmanipualted_features_are_noisified_when_noisy_features_on(self):
env = college_admission.CollegeAdmissionsEnv(user_params={
'gaming': False,
'noisy_features': True
})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
action = agent.initial_action()
env.step(action)
self.assertFalse((np.array(env.state.original_test_scores) -
np.array(env.state.test_scores_x) == 0).all())
def test_unmanipualted_features_not_noisified_when_noisy_features_off(self):
env = college_admission.CollegeAdmissionsEnv(user_params={
'gaming': False,
'noisy_features': False
})
agent = random_agents.RandomAgent(
env.action_space,
None,
env.observation_space,
default_action={
'threshold': np.array(0.8),
'epsilon_prob': np.array(0)
})
action = agent.initial_action()
env.step(action)
self.assertTrue((np.array(env.state.original_test_scores) -
np.array(env.state.test_scores_x) == 0).all())
def test_invalid_gaming_control_raises_error(self):
with self.assertRaises(ValueError):
college_admission.CollegeAdmissionsEnv(user_params={'gaming_control': 2})
def test_invalid_noise_dist_raises_error(self):
with self.assertRaises(ValueError):
college_admission.CollegeAdmissionsEnv(
user_params={'noise_dist': 'random'})
if __name__ == '__main__':
absltest.main()