-
Notifications
You must be signed in to change notification settings - Fork 1
/
soradna1.m
148 lines (121 loc) · 4.24 KB
/
soradna1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function [z,sorad]=soradna1(yd,yr,long,lat)
% SORADNA1: computes no-sky solar radiation and solar altitude.
% [z,sorad]=SORADNA1(yd,yr,long,lat) computes instantaneous values of
% solar radiation and solar altitude from yearday, year, and position
% data. It is put together from expressions taken from Appendix E in the
% 1978 edition of Almanac for Computers, Nautical Almanac Office, U.S.
% Naval Observatory. They are reduced accuracy expressions valid for the
% years 1800-2100. Solar declination computed from these expressions is
% accurate to at least 1'. The solar constant (1368.0 W/m^2) represents a
% mean of satellite measurements made over the last sunspot cycle (1979-1995)
% taken from Coffey et al (1995), Earth System Monitor, 6, 6-10. Assumes
% yd is either a column or row vector, the other input variables are scalars,
% OR yd is a scalar, the other inputs matrices.
%
% INPUT: yd - decimal yearday (e.g., 0000Z Jan 1 is 0.0)
% yr - year (e.g., 1995)
% long - longitude (west is positive!) [deg]
% lat - latitude [deg]
%
% OUTPUT: z - solar altitude [deg]
% sorad- no atmosphere solar radiation [W/m^2]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3/8/97: version 1.0
% 8/28/98: version 1.1 (vectorized by RP)
% 8/5/99: version 2.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get constants
as_consts;
% convert yd to column vector if necessary
[n,m]=size(yd);
if m > n
yd=yd';
end
% convert yearday to calender time
gtime=greg2(yd,yr);
SC=gtime(:,6);
MN=fix(gtime(:,5));
HR=fix(gtime(:,4));
D=fix(gtime(:,3));
M=fix(gtime(:,2));
Y=fix(gtime(:,1));
% convert to new variables
LONG=long;
LAT=lat;
% two options - either long/lat are vectors, time is a scalar
if length(LONG)==1 & length(LAT)>1,
LONG=LONG(ones(size(LAT)));
elseif length(LONG)>1 & length(LAT)==1,
LAT=LAT(ones(size(LAT)));
end;
if length(SC)==1,
osiz=ones(size(LONG));
SC=SC(osiz);
MN=MN(osiz);
HR=HR(osiz);
D=D(osiz);
M=M(osiz);
Y=Y(osiz);
elseif length(LONG)==1,
LONG=LONG(ones(size(SC)));
LAT=LAT(ones(size(SC)));
end;
% constants
DTR=3.14159265/180;
RTD=1./DTR;
% compute Universal Time in hours
UT = HR+(MN+SC./60.)./60;
% compute Julian ephemeris date in days (Day 1 is 1 Jan 4713 B.C.=-4712 Jan 1)
JED=367.*Y-fix(7.*(Y+fix((M+9)./12))./4)+fix(275.*M./9)+D+1721013 + UT./24;
% compute interval in Julian centuries since 1900
T=(JED-2415020.0)./36525;
% compute mean anomaly of the sun
G=358.475833+35999.049750.*T-.000150.*T.^2;
NG=fix(G./360);
G=(G-NG.*360).*DTR;
% compute mean longitude of sun
L=279.696678+36000.768920.*T+.000303.*T.^2;
NL=fix(L./360);
L=(L-NL.*360).*DTR;
% compute mean anomaly of Jupiter
JUP=225.444651+2880.0.*T+154.906654.*T;
NJUP=fix(JUP/360);
JUP=(JUP-NJUP.*360).*DTR;
% compute longitude of the ascending node of the moon's orbit
NM=259.183275-1800.*T-134.142008.*T+.002078.*T.^2;
NNM=fix(NM./360);
NM=(NM-NNM.*360+360).*DTR;
% compute mean anomaly of Venus
V=212.603219+58320.*T+197.803875.*T+.001286.*T.^2;
NV=fix(V/360);
V=(V-NV.*360.).*DTR;
% compute sun theta
THETA=.397930.*sin(L)+.009999.*sin(G-L)+.003334.*sin(G+L)...
-.000208.*T.*sin(L)+.000042.*sin(2.*G+L)-.000040.*cos(L)...
-.000039.*sin(NM-L)-.000030.*T.*sin(G-L)-.000014.*sin(2.*G-L)...
-.000010.*cos(G-L-JUP)-.000010.*T.*sin(G+L);
% compute sun rho
RHO=1.000421-.033503.*cos(G)-.000140.*cos(2*G)...
+.000084.*T.*cos(G)-.000033.*sin(G-JUP)+.000027.*sin(2.*G-2.*V);
% compute declination
DECL=asin(THETA./sqrt(RHO));
% compute equation of time (in seconds of time) (L in degrees)
L = 276.697+0.98564734.*(JED-2415020.0);
L = (L - 360.*fix(L./360.)).*DTR;
EQT = -97.8.*sin(L)-431.3.*cos(L)+596.6.*sin(2.*L)-1.9.*cos(2.*L)...
+4.0.*sin(3.*L)+19.3.*cos(3.*L)-12.7.*sin(4.*L);
EQT = EQT./60;
L = L.*RTD;
% compute local hour angle
GHA = 15.*(UT-12.) + 15.*EQT./60;
LHA = GHA - LONG;
% compute radius vector
RV=sqrt(RHO);
% compute solar altitude
SZ=sin(DTR.*LAT).*sin(DECL)+cos(DTR.*LAT).*cos(DECL).*cos(DTR.*LHA);
z=RTD.*asin(SZ);
% compute solar radiation outside atmosphere
[n,m]=size(z);
sorad=zeros(n,m);
ii=z>0;
sorad(ii)=(Solar_const./RV(ii).^2).*sin(DTR.*z(ii));