forked from falvaro/seshat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymrec.cc
403 lines (315 loc) · 11.1 KB
/
symrec.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*Copyright 2014 Francisco Alvaro
This file is part of SESHAT.
SESHAT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
SESHAT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SESHAT. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <map>
#include <climits>
#include <cfloat>
#include "symrec.h"
#define TSIZE 2048
SymRec::SymRec(char *config) {
FILE *fd=fopen(config, "r");
if( !fd ) {
fprintf(stderr, "Error: loading config file '%s'\n", config);
exit(-1);
}
//RNN classifier configuration
char RNNon[TSIZE], RNNoff[TSIZE];
char RNNmavON[TSIZE], RNNmavOFF[TSIZE];
char id[TSIZE], info[TSIZE], path[TSIZE];
RNNon[0] = RNNoff[0] = RNNmavON[0] = RNNmavOFF[0] = 0;
path[0] = 0;
RNNalpha=-1.0;
while( !feof(fd) ) {
fscanf(fd, "%s", id); //Field id
fscanf(fd, "%s", info); //Info
//Remove the last \n character
if( info[strlen(info)-1] == '\n' )
info[strlen(info)-1] = '\0';
if( !strcmp(id,"RNNon") ) strcpy(RNNon, info);
else if( !strcmp(id,"RNNoff") ) strcpy(RNNoff, info);
else if( !strcmp(id,"RNNmavON") ) strcpy(RNNmavON, info);
else if( !strcmp(id,"RNNmavOFF") ) strcpy(RNNmavOFF, info);
else if( !strcmp(id,"RNNalpha") ) RNNalpha = atof(info);
else if( !strcmp(id,"SymbolTypes") ) strcpy(path, info);
}
if( RNNalpha <= 0.0 || RNNalpha >= 1.0 ) {
fprintf(stderr, "Error: loading config file '%s': must be 0 < RNNalpha < 1\n", config);
exit(-1);
}
if( RNNon[0] == 0 ) {
fprintf(stderr, "Error: loading RNNon in config file\n");
exit(-1);
}
if( RNNoff[0] == 0 ) {
fprintf(stderr, "Error: loading RNNoff in config file\n");
exit(-1);
}
if( RNNmavON[0] == 0 ) {
fprintf(stderr, "Error: loading RNNmavON in config file\n");
exit(-1);
}
if( RNNmavOFF[0] == 0 ) {
fprintf(stderr, "Error: loading RNNmavOFF in config file\n");
exit(-1);
}
//Close config file
fclose( fd );
//Load symbol types info
FILE *tp = fopen(path, "r");
if( !tp ) {
fprintf(stderr, "Error: loading SymbolTypes file '%s'\n", path);
exit(-1);
}
//Number of classes
fscanf(tp, "%d", &C); getc(tp);
key2cl = new string[C];
type = new int[C];
char clase[256], T=0, linea[256]; // aux[256];
//Load classes and symbol types
int idclase=0;
while( fgets(linea, 256, tp) != NULL ) {
for(int i=0; linea[i] && linea[i] != '\n'; i++) {
clase[i] = linea[i];
if( linea[i]==' ' ) {
clase[i] = 0;
T = linea[i+1];
break;
}
}
key2cl[idclase] = clase;
cl2key[clase] = idclase;
idclase++;
if( T=='n' ) type[ cl2key[clase] ] = 0; //Centroid
else if( T=='a' ) type[ cl2key[clase] ] = 1; //Ascender
else if( T=='d' ) type[ cl2key[clase] ] = 2; //Descender
else if( T=='m' ) type[ cl2key[clase] ] = 3; //Middle
else {
fprintf(stderr, "SymRec: Error reading symbol types\n");
exit(-1);
}
}
//Features extraction
FEAS = new SymFeatures(RNNmavON, RNNmavOFF);
//Create and load BLSTM models
//Online info
ConfigFile conf_on(RNNon);
header_on.targetLabels = conf_on.get_list<string>("targetLabels");
header_on.inputSize = conf_on.get<int>("inputSize");
header_on.outputSize = header_on.targetLabels.size();
header_on.numDims = 1;
//Create WeightContainer online
wc_on = new WeightContainer( &deh_on );
//Load online BLSTM
blstm_on = new MultilayerNet(cout, conf_on, header_on, wc_on, &deh_on);
//build weight container after net is created
wc_on->build();
//build the network after the weight container
blstm_on->build();
//create trainer
Trainer trainer_on(cout, blstm_on, conf_on, wc_on, &deh_on);
if (conf_on.get<bool>("loadWeights", false))
deh_on.load(conf_on, cout);
//Offline info
ConfigFile conf_off(RNNoff);
//Check if the targetLabels are the same for both online and offline RNN-BLSTM
vector<string> aux = conf_off.get_list<string>("targetLabels");
if( aux.size() != header_on.targetLabels.size() ) {
fprintf(stderr, "Error: Target labels of online and offline symbol classifiers do not match\n");
exit(-1);
}
for(vector<string>::iterator it1=aux.begin(), it2=header_on.targetLabels.begin();
it1!=aux.end() && it2!=header_on.targetLabels.end(); it1++, it2++) {
if( (*it1).compare( *it2 ) ) {
fprintf(stderr, "Error: Target labels of online and offline symbol classifiers do not match\n");
exit(-1);
}
}
header_off.targetLabels = conf_off.get_list<string>("targetLabels");
header_off.inputSize = conf_off.get<int>("inputSize");
header_off.outputSize = header_off.targetLabels.size();
header_off.numDims = 1;
//Create WeightContainer offline
wc_off = new WeightContainer( &deh_off );
//Load offline BLSTM
blstm_off = new MultilayerNet(cout, conf_off, header_off, wc_off, &deh_off);
//build weight container after net is created
wc_off->build();
//build the network after the weight container
blstm_off->build();
//create trainer
Trainer trainer_off(cout, blstm_off, conf_off, wc_off, &deh_off);
if (conf_off.get<bool>("loadWeights", false))
deh_off.load(conf_off, cout);
}
SymRec::~SymRec() {
delete FEAS;
delete[] type;
delete[] key2cl;
delete blstm_on;
delete blstm_off;
delete wc_on;
delete wc_off;
}
char *SymRec::strClase(int c) {
return (char *)(key2cl[c]).c_str();
}
int SymRec::keyClase(char *str) {
if( cl2key.find(str) == cl2key.end() ) {
fprintf(stderr, "WARNING: Class '%s' doesn't appear in symbols database\n", str);
return -1;
}
return cl2key[str];
}
bool SymRec::checkClase(char *str) {
if( cl2key.find(str) == cl2key.end() )
return false;
return true;
}
int SymRec::getNClases() {
return C;
}
//Returns the type of symbol of class k
int SymRec::symType(int k) {
return type[k];
}
/************
* Classify *
************/
int SymRec::clasificar(Sample *M, int ncomp, const int NB, int *vclase, float *vpr, int *as, int *ds) {
list<int> aux;
aux.push_back( ncomp );
return clasificar(M, &aux, NB, vclase, vpr, as, ds);
}
int SymRec::clasificar(Sample *M, list<int> *LT, const int NB, int *vclase, float *vpr, int *as, int *ds) {
SegmentHyp aux;
aux.rx = aux.ry = INT_MAX;
aux.rs = aux.rt = -INT_MAX;
for(list<int>::iterator it=LT->begin(); it!=LT->end(); it++) {
aux.stks.push_back( *it );
if( M->getStroke(*it)->rx < aux.rx ) aux.rx = M->getStroke(*it)->rx;
if( M->getStroke(*it)->ry < aux.ry ) aux.ry = M->getStroke(*it)->ry;
if( M->getStroke(*it)->rs > aux.rs ) aux.rs = M->getStroke(*it)->rs;
if( M->getStroke(*it)->rt > aux.rt ) aux.rt = M->getStroke(*it)->rt;
}
return classify(M, &aux, NB, vclase, vpr, as, ds);
}
int SymRec::classify(Sample *M, SegmentHyp *SegHyp, const int NB, int *vclase, float *vpr, int *as, int *ds) {
int regy = INT_MAX, regt=-INT_MAX, N=0;
//First compute the vertical centroid (cen) and the ascendant/descendant centroids (as/ds)
SegHyp->cen=0;
for(list<int>::iterator it=SegHyp->stks.begin(); it!=SegHyp->stks.end(); it++) {
for(int j=0; j<M->getStroke(*it)->getNpuntos(); j++) {
Punto *p = M->getStroke(*it)->get(j);
if( M->getStroke(*it)->ry < regy )
regy = M->getStroke(*it)->ry;
if( M->getStroke(*it)->rt > regt )
regt = M->getStroke(*it)->rt;
SegHyp->cen += p->y;
N++;
}
}
SegHyp->cen /= N;
*as = (SegHyp->cen+regt)/2;
*ds = (regy+SegHyp->cen)/2;
//Feature extraction of hypothesis
DataSequence *feat_on, *feat_off;
//Online features extraction: PRHLT (7 features)
feat_on = FEAS->getOnline( M, SegHyp );
//Render the image representing the set of strokes SegHyp->stks
int **img, Rows, Cols;
M->renderStrokesPBM(&SegHyp->stks, &img, &Rows, &Cols);
//Offline features extraction: FKI (9 features)
feat_off = FEAS->getOfflineFKI(img, Rows, Cols);
//cout << feat_off->inputs;
for(int i=0; i<Rows; i++)
delete[] img[i];
delete[] img;
//n-best classification
pair<float,int> clason[NB], clasoff[NB], clashyb[2*NB];
for(int i=0; i<NB; i++) {
clason[i].first = 0.0; //probability
clason[i].second = -1; //class id
clasoff[i].first = 0.0;
clasoff[i].second = -1;
clashyb[i].first = 0.0;
clashyb[i].second = -1;
}
//Online/offline classification
BLSTMclassification( blstm_on, feat_on, clason, NB);
BLSTMclassification( blstm_off, feat_off, clasoff, NB);
//Online + Offline n-best linear combination
//alpha * pr(on) + (1 - alpha) * pr(off)
for(int i=0; i<NB; i++) {
clason[i].first *= RNNalpha; //online * alpha
clasoff[i].first *= 1.0 - RNNalpha; //offline * (1-alpha)
}
int hybnext=0;
for(int i=0; i<NB; i++) {
if( clason[i].second >= 0 ) {
clashyb[hybnext].first = clason[i].first;
clashyb[hybnext].second = clason[i].second;
for(int j=0; j<NB; j++)
if( clason[i].second == clasoff[j].second ) {
clashyb[hybnext].first += clasoff[j].first;
break;
}
hybnext++;
}
if( clasoff[i].second < 0 ) continue;
bool found=false;
for(int j=0; j<NB && !found; j++)
if( clasoff[i].second == clason[j].second )
found = true;
//Add the (1-alpha) probability if the class is in OFF but not in ON
if( !found ) {
clashyb[hybnext].first = clasoff[i].first;
clashyb[hybnext].second = clasoff[i].second;
hybnext++;
}
}
sort( clashyb, clashyb+hybnext, std::greater< pair<float,int> >() );
for(int i=0; i<min(hybnext, NB); i++) {
vpr[i] = clashyb[i].first;
vclase[i] = clashyb[i].second;
}
return SegHyp->cen;
}
void SymRec::BLSTMclassification( Mdrnn *net, DataSequence *seq, pair<float,int> *claspr, const int NB ) {
//Classify sample with net
net->train(*seq);
//Get output layer and its shape
Layer *L = (Layer*)net->outputLayers.front();
int NVEC=L->outputActivations.shape[0];
int NCLA=L->outputActivations.shape[1];
pair<float,int> *prob_class = new pair<float,int>[NCLA];
for(int i=0; i<NCLA; i++)
prob_class[i].second = cl2key[ header_on.targetLabels[i] ]; //targetLabels on = targetLabels off
for(int i=0; i<NCLA; i++)
prob_class[i].first = 0.0;
//Compute the average posterior probability per class
for(int nvec=0; nvec<NVEC; nvec++)
for(int ncla=0; ncla<NCLA; ncla++)
prob_class[ncla].first += L->outputActivations.data[nvec*NCLA + ncla];
for(int ncla=0; ncla<NCLA; ncla++)
prob_class[ncla].first /= NVEC;
//Sort classification result by its probability
sort(prob_class, prob_class+NCLA, std::greater< pair<float,int> >());
//Copy n-best to output vector
for(int i=0; i<NB; i++)
claspr[i] = prob_class[i];
delete[] prob_class;
}