-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem7.jl
42 lines (39 loc) · 1.04 KB
/
problem7.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function find_prime_sieve(maxPrime)
isPrime = falses(maxPrime)
mod60 = mod([1:maxPrime],60)
maxX = int(ceil(sqrt(maxPrime)))
for x = 1:maxX, y=1:maxX
n = 4*x^2+y^2
if n <= maxPrime
if contains([1 13 17 29 37 41 49 53], mod60[n])
isPrime[n] = !isPrime[n]
end
end
n = 3*x^2+y^2
if n <= maxPrime
if contains([7 19 31 43], mod60[n])
isPrime[n] = !isPrime[n]
end
end
if x>y
n = 3*x^2-y^2
if n <= maxPrime
if contains([11 23 47 59], mod60[n])
isPrime[n] = !isPrime[n]
end
end
end
end
for n = 5:maxPrime
if isPrime[n]
numSquares = int(floor(maxPrime/n^2))
for i = 1:numSquares
isPrime[i*n^2] = false
end
end
end
isPrime[1:5] = [false true true false true]
return isPrime
end
primes = find(find_prime_sieve(10^6))
println(primes[10001])