forked from OMirzaei/AndrODet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AndrODet_MOA.py
311 lines (236 loc) · 12.9 KB
/
AndrODet_MOA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# ************************ General Information ************************
'''
VERSION:
-------
Version (by release date): 2019-11-25
DEVELOPER INFORMATION:
---------------------
Name: Omid Mirzaei
Laboratory: Computer Security Lab (COSEC)
University: Universidad Carlos III de Madrid
Website: https://cosec.inf.uc3m.es/~omid-mirzaei/
PUBLICATION:
-----------
AndrODet: An Adaptive Android Obfuscation Detector
O. Mirzaei, J. M. de Fuentes, J. E. Tapiador, L. Gonzalez-Manzano
Future Generation Computer Systems, Elsevier (January 2019)
COPYRIGHT NOTICE:
----------------
All rights reserved for the above developer and research center.
Please, take a look at the "License.txt" file for more detailed information regarding the usage and distribution of these source codes.
ACKNOWLEDGEMENT:
---------------
This work has been partially supported by the:
MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV);
CAM grant S2013/ICE-3095 (CIBERDINE);
co-funded with European FEDER funds;
partially supported by the UC3M's grant Programa de Ayudas para la Movilidad.
The authors would like to thank the Allatori technical team for its valuable assistance, and, also, the authors of the AMD and PraGuard datasets which made their repositories available to us.
'''
# ************************ End of General Information ************************
# ************************ Module Information ************************
'''
MAIN FUNCTIONALITY:
------------------
This module extracts features from each Android application in the stream, test the system, and, also, trains it incrementally.
ARGUMENTS:
---------
-a: Directory of Android applications (.apk files)
-d: Directory of dexdump disassembler.
-g: Directory of androguard tool.
-o: Directory of output.
USAGE:
-----
python AndrODet_MOA.py -a '/Directory/of/apps' -d '/Directory/of/dexdump' -g '/Directory/of/androguard' -o '/Directory/of/output'
'''
# ************************ End of Module Information ************************
# ************************ Importing Modules ************************
import os
import subprocess
import multiprocessing
from optparse import OptionParser
from feature_extraction import EFI
from feature_extraction import EFS
from feature_extraction import EFC
from sklearn.metrics import confusion_matrix, accuracy_score
import numpy as np
# ************************ End of Importing Modules ************************
# ************************ Initialization ************************
Home_Dir = os.path.curdir # Home directory
MOA_CP = os.path.join(Home_Dir, 'MOA') # MOA directory
n_procs = 20 # Number of processes
num_features_IR = 15 # Number of features for IR
num_features_SE = 8 # Number of features for SE
num_features_CF = 7 # Number of features for CF
Real_Classes = {} # Real classes of apps
# --------------- Setting command-line options ---------------
option_1 = { 'name' : ('-a', '--apps_dir'), 'help' : 'Directory of apk files', 'nargs' : 1 }
option_2 = { 'name' : ('-d', '--dexdump_dir'), 'help' : 'Directory of dexdump', 'nargs' : 1 }
option_3 = { 'name' : ('-g', '--androguard_dir'), 'help' : 'Directory of androguard', 'nargs' : 1 }
option_4 = { 'name' : ('-o', '--output_dir'), 'help' : 'Directory of output', 'nargs' : 1 }
options = [option_1, option_2, option_3, option_4]
# --------------- End of Setting command-line options ---------------
# --------------- Configuring MOA settings ---------------
class IR_Detector():
def __init__(self):
self.learner_IR = 'meta.LeveragingBag' # Learning algorithm for identifier renaming
self.class_col_num_IR = str(num_features_IR + 1) # Class column number in .arff file
def extract_features(self, appfile):
dirname, filename = os.path.split(appfile)
dirname = os.path.join(dirname, 'apps_features')
app_name = filename[:-4]
features_IDs = EFI.extract_features(appfile, options.apps_dir, options.dexdump_dir, dirname)
return features_IDs
def test(self, arff_file):
subprocess.call(['java', '-cp', os.path.join(MOA_CP, 'moa.jar'), \
'-javaagent:' + os.path.join(MOA_CP, 'sizeofag-1.0.0.jar'), 'moa.DoTask', \
'EvaluatePrequential', '-l', '(' + self.learner_IR, '-s', '20)', \
'-s', '(ArffFileStream', '-f', arff_file, '-c', self.class_col_num_IR + ')', \
'-i', '-1', '-f', '1', '-o', os.path.join(options.output_dir, 'predictions_IR_module')])
output_file = open(os.path.join(options.output_dir, 'predictions_IR_module'), 'rb')
result = output_file.readlines()
return result
class SE_Detector():
def __init__(self):
self.learner_SE = 'meta.LeveragingBag' # Learning algorithm for string encryption
self.class_col_num_SE = str(num_features_SE + 1) # Class column number in .arff file
def extract_features(self, appfile):
dirname, filename = os.path.split(appfile)
dirname = os.path.join(dirname, 'apps_features')
app_name = filename[:-4]
features_STs = EFS.extract_features(appfile, options.apps_dir, options.dexdump_dir, dirname)
return features_STs
def test(self, arff_file):
subprocess.call(['java', '-cp', os.path.join(MOA_CP, 'moa.jar'), \
'-javaagent:' + os.path.join(MOA_CP, 'sizeofag-1.0.0.jar'), 'moa.DoTask', \
'EvaluatePrequential', '-l', '(' + self.learner_SE, '-s', '20)', \
'-s', '(ArffFileStream', '-f', arff_file, '-c', self.class_col_num_SE + ')', \
'-i', '-1', '-f', '1', '-o', os.path.join(options.output_dir, 'predictions_SE_module')])
output_file = open(os.path.join(options.output_dir, 'predictions_SE_module'), 'rb')
result = output_file.readlines()
return result
class CF_Detector():
def __init__(self):
self.learner_CF = 'meta.LeveragingBag' # Learning algorithm for control flow obfuscation
self.class_col_num_CF = str(num_features_CF + 1) # Class column number in .arff file
def extract_features(self, appfile):
dirname, filename = os.path.split(appfile)
dirname = os.path.join(dirname, 'apps_features')
app_name = filename[:-4]
features_CFs = EFC.extract_features(appfile, options.apps_dir, options.androguard_dir, options.dexdump_dir, dirname)
return features_CFs
def test(self, arff_file):
subprocess.call(['java', '-cp', os.path.join(MOA_CP, 'moa.jar'), \
'-javaagent:' + os.path.join(MOA_CP, 'sizeofag-1.0.0.jar'), 'moa.DoTask', \
'EvaluatePrequential', '-l', '(' + self.learner_CF, '-s', '20)', \
'-s', '(ArffFileStream', '-f', arff_file, '-c', self.class_col_num_CF + ')', \
'-i', '-1', '-f', '1', '-o', os.path.join(options.output_dir, 'predictions_CF_module')])
output_file = open(os.path.join(options.output_dir, 'predictions_CF_module'), 'rb')
result = output_file.readlines()
return result
# --------------- End of Configuring MOA settings ---------------
# ********************* End of Initialization *********************
# ********************* Functions *********************
def set_learners():
# --------------- Setting learner parameters ---------------
IR_module = IR_Detector()
SE_module = SE_Detector()
CF_module = CF_Detector()
# --------------- End of Setting learner parameters ---------------
return IR_module, SE_module, CF_module
def feature_extraction(appfile, IR_module, SE_module, CF_module):
dirname, filename = os.path.split(appfile)
dirname = os.path.join(dirname, 'apps_features')
app_name = filename[:-4]
try:
# --------------- Extracting features ---------------
features_IR = IR_module.extract_features(appfile)
features_SE = SE_module.extract_features(appfile)
features_CF = CF_module.extract_features(appfile)
# --------------- End of Extracting features ---------------
if features_IR and len(features_IR) == num_features_IR and features_SE and len(features_SE) == num_features_SE and features_CF and len(features_CF) == num_features_CF:
features_IR.append(Real_Classes[app_name][0])
features_SE.append(Real_Classes[app_name][1])
features_CF.append(Real_Classes[app_name][2])
return app_name, features_IR, features_SE, features_CF
except:
print('features extraction failed for app', appfile)
def detect_obfuscation(IR_arff_fie, SE_arff_fie, CF_arff_fie):
try:
# --------------- Testing the learner ---------------
predict_output_IR = IR_module.test(IR_arff_fie)
predict_output_SE = SE_module.test(SE_arff_fie)
predict_output_CF = CF_module.test(CF_arff_fie)
# --------------- End of Testing the learner ---------------
return predict_output_IR, predict_output_SE, predict_output_CF
except:
print('System could not successfully analyze app %s!' %app_name)
pass
def confusion_matrix_update(conf_matrix, real_classes, predicted_classes):
row_idx = int(real_classes, 2)
col_idx = int(predicted_classes, 2)
conf_matrix[row_idx][col_idx] += 1
return conf_matrix
# ********************* End of Functions *********************
# ********************* Main Body *********************
if __name__ == '__main__':
parser = OptionParser()
for option in options:
param = option['name']
del option['name']
parser.add_option(*param, **option)
options, arguments = parser.parse_args()
if not os.path.exists(options.output_dir):
os.mkdir(options.output_dir)
IR_module, SE_module, CF_module = set_learners()
all_apks = set() # To discard possible redundant apk files
for root, directories, filenames in os.walk(options.apps_dir):
for filename in filenames:
if '.DS_Store' not in filename and '.apk' in filename:
all_apks.add(os.path.join(root,filename))
if filename[:-4] not in Real_Classes.keys():
Real_Classes[filename[:-4]] = np.zeros(3, dtype=int)
if '/IR/YES' in root:
Real_Classes[filename[:-4]][0] = 1
if '/SE/YES' in root:
Real_Classes[filename[:-4]][1] = 1
if '/CF/YES' in root:
Real_Classes[filename[:-4]][2] = 1
pool = multiprocessing.Pool(n_procs)
results = [pool.apply_async(feature_extraction, [appfile, IR_module, SE_module, CF_module]) for appfile in all_apks]
pool.close()
pool.join()
features_IR = []
features_SE = []
features_CF = []
processed_apps = []
for res in results:
try:
if len(res.get()) == 4:
app_name = res.get()[0]
features_IR.append(res.get()[1])
features_SE.append(res.get()[2])
features_CF.append(res.get()[3])
processed_apps.append(app_name)
except:
pass
features_file_IR_arff = open(os.path.join(options.output_dir, 'features_IR.arff'), 'wb')
features_file_SE_arff = open(os.path.join(options.output_dir, 'features_SE.arff'), 'wb')
features_file_CF_arff = open(os.path.join(options.output_dir, 'features_CF.arff'), 'wb')
EFI.save_features_to_arff(features_IR, features_file_IR_arff)
EFS.save_features_to_arff(features_SE, features_file_SE_arff)
EFC.save_features_to_arff(features_CF, features_file_CF_arff)
features_file_IR_arff.close()
features_file_SE_arff.close()
features_file_CF_arff.close()
predict_output_IR, predict_output_SE, predict_output_CF = detect_obfuscation(os.path.join(options.output_dir, 'features_IR.arff'), \
os.path.join(options.output_dir, 'features_SE.arff'), \
os.path.join(options.output_dir, 'features_CF.arff'))
conf_matrix = np.zeros((8, 8), dtype=int)
for idx in range(0, len(predict_output_IR)):
real_classes = str(Real_Classes[processed_apps[idx]][0]) + str(Real_Classes[processed_apps[idx]][1]) + str(Real_Classes[processed_apps[idx]][2])
predicted_classes = predict_output_IR[idx].split(',')[0] + predict_output_SE[idx].split(',')[0] + predict_output_CF[idx].split(',')[0]
conf_matrix = confusion_matrix_update(conf_matrix, real_classes, predicted_classes)
print('Confusion Matrix:')
print(conf_matrix)
# ********************* End of Main Body *********************