From e393e48e5e62a3b87f04c3680224e2e27ebe1cb3 Mon Sep 17 00:00:00 2001 From: qd-qd Date: Wed, 8 May 2024 11:16:18 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20get-smoo?= =?UTF-8?q?th/secp256r1-verify@62a9b6b73a0f131f8fc8fbc2e8fe4c35c0ebb8df=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- print.html | 10 +++++----- src/ECDSA256r1.sol/library.ECDSA256r1.html | 2 +- src/utils/ECDSA.sol/library.ECDSA.html | 2 +- src/utils/secp256r1.sol/constants.secp256r1.html | 2 +- src/utils/secp256r1.sol/function.nModInv.html | 2 +- src/utils/secp256r1.sol/function.pModInv.html | 2 +- 6 files changed, 10 insertions(+), 10 deletions(-) diff --git a/print.html b/print.html index 3522e5b..5bb050a 100644 --- a/print.html +++ b/print.html @@ -378,7 +378,7 @@

Acknowledge
  • secp256r1 constants
  • ECDSA

    -

    Git Source

    +

    Git Source

    Library for handling Elliptic Curve Digital Signature Algorithm (ECDSA) operations on a compatible curve

    Functions

    zz2Aff

    @@ -495,7 +495,7 @@

    affAdd

    y2uint256The Y-coordinate of the resulting point

    pModInv

    -

    Git Source

    +

    Git Source

    Calculate the modular inverse of a given integer, which is the inverse of this integer modulo p.

    Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem

    function pModInv(uint256 self) returns (uint256 result);
    @@ -510,7 +510,7 @@ 

    affAdd

    resultuint256The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx

    nModInv

    -

    Git Source

    +

    Git Source

    Calculate the modular inverse of a given integer, which is the inverse of this integer modulo n.

    Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem

    function nModInv(uint256 self) returns (uint256 result);
    @@ -525,7 +525,7 @@ 

    affAdd

    resultuint256The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx

    Constants

    -

    Git Source

    +

    Git Source

    p

    uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
     
    @@ -557,7 +557,7 @@

    MODEXP_PR
    address constant MODEXP_PRECOMPILE = 0x0000000000000000000000000000000000000005;
     

    ECDSA256r1

    -

    Git Source

    +

    Git Source

    A library to verify ECDSA signatures made on the secp256r1 curve

    This is the easiest library to deal with but also the most expensive in terms of gas cost. Indeed, this library must calculate multiple points on the curve in order to verify the signature. Use it kmowingly.

    diff --git a/src/ECDSA256r1.sol/library.ECDSA256r1.html b/src/ECDSA256r1.sol/library.ECDSA256r1.html index f505d20..b4f3f35 100644 --- a/src/ECDSA256r1.sol/library.ECDSA256r1.html +++ b/src/ECDSA256r1.sol/library.ECDSA256r1.html @@ -178,7 +178,7 @@

    ECDSA256r1

    -

    Git Source

    +

    Git Source

    A library to verify ECDSA signatures made on the secp256r1 curve

    This is the easiest library to deal with but also the most expensive in terms of gas cost. Indeed, this library must calculate multiple points on the curve in order to verify the signature. Use it kmowingly.

    diff --git a/src/utils/ECDSA.sol/library.ECDSA.html b/src/utils/ECDSA.sol/library.ECDSA.html index f09a1fc..00a0edf 100644 --- a/src/utils/ECDSA.sol/library.ECDSA.html +++ b/src/utils/ECDSA.sol/library.ECDSA.html @@ -178,7 +178,7 @@

    ECDSA

    -

    Git Source

    +

    Git Source

    Library for handling Elliptic Curve Digital Signature Algorithm (ECDSA) operations on a compatible curve

    Functions

    zz2Aff

    diff --git a/src/utils/secp256r1.sol/constants.secp256r1.html b/src/utils/secp256r1.sol/constants.secp256r1.html index 0940bf8..b85e6ed 100644 --- a/src/utils/secp256r1.sol/constants.secp256r1.html +++ b/src/utils/secp256r1.sol/constants.secp256r1.html @@ -178,7 +178,7 @@

    Constants

    -

    Git Source

    +

    Git Source

    p

    uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
     
    diff --git a/src/utils/secp256r1.sol/function.nModInv.html b/src/utils/secp256r1.sol/function.nModInv.html index 9f198f6..0449bf3 100644 --- a/src/utils/secp256r1.sol/function.nModInv.html +++ b/src/utils/secp256r1.sol/function.nModInv.html @@ -178,7 +178,7 @@

    nModInv

    -

    Git Source

    +

    Git Source

    Calculate the modular inverse of a given integer, which is the inverse of this integer modulo n.

    Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem

    function nModInv(uint256 self) returns (uint256 result);
    diff --git a/src/utils/secp256r1.sol/function.pModInv.html b/src/utils/secp256r1.sol/function.pModInv.html
    index bdd4a7f..50be298 100644
    --- a/src/utils/secp256r1.sol/function.pModInv.html
    +++ b/src/utils/secp256r1.sol/function.pModInv.html
    @@ -178,7 +178,7 @@ 

    pModInv

    -

    Git Source

    +

    Git Source

    Calculate the modular inverse of a given integer, which is the inverse of this integer modulo p.

    Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem

    function pModInv(uint256 self) returns (uint256 result);