-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo2.m
46 lines (39 loc) · 1.28 KB
/
demo2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
% Demo using synthetic data
% Note that both EM algorithms sometimes produce a suboptimal result!
% generate dataset
L = 1000; % number of sample
data = rand(2,L)+[zeros(2,L/2), ones(2,L/2)];
n=2; % number of clusters
% run FastEM
tic;
sampleWeights = ones(1,L)/L;
[muFastEM,CFastEM,wFastEM] = fastem(data,sampleWeights,n);
tFastEM = toc;
% run Matlab's builtin EM
tic;
gmm = fitgmdist(data', n, 'Options', statset('Display','iter','TolFun',1E-3),'RegularizationValue',1E-6);
tMatlab = toc;
wMatlab = gmm.ComponentProportion';
muMatlab = gmm.mu';
CMatlab = gmm.Sigma;
% plot results
figure(1)
clf
scatter(data(1,:), data(2,:));
hold on
for i=1:n
error_ellipse(CFastEM(:,:,i), muFastEM(:,i),'style','r');
error_ellipse(CMatlab(:,:,i), muMatlab(:,i),'style','g');
end
hold off
legend('data', 'FastEM', 'Matlab EM');
xlabel('x')
ylabel('y')
% Compute loglikelihood
gm = GaussianMixture(muFastEM, CFastEM, wFastEM');
loglikelihoodFastEM = sum(sampleWeights.*gm.logPdf(data));
gm = GaussianMixture(muMatlab, CMatlab, wMatlab');
loglikelihoodMatlab = sum(sampleWeights.*gm.logPdf(data));
% Prinz reults
fprintf('FastEM time=%f, loglikelihood=%f\n', tFastEM, loglikelihoodFastEM)
fprintf('MATLAB EM time=%f, loglikelihood=%f\n', tMatlab, loglikelihoodMatlab)