-
Notifications
You must be signed in to change notification settings - Fork 87
/
OP.py
474 lines (405 loc) · 17.3 KB
/
OP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
My own layer above the official Openpose python wrapper : https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/modules/python_module.md
Tested only on ubuntu.
Modify MODEL_FOLDER to point to the directory where the models are installed
"""
import cv2
import os, sys
from sys import platform
import argparse
from collections import namedtuple
import numpy as np
from FPS import FPS
from matplotlib import pyplot as plt
dir_path = os.path.dirname(os.path.realpath(__file__))
try:
# Windows Import
if platform == "win32":
# Change these variables to point to the correct folder (Release/x64 etc.)
sys.path.append(dir_path + '/../../python/openpose/Release');
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/../../x64/Release;' + dir_path + '/../../bin;'
import pyopenpose as op
else:
# Change these variables to point to the correct folder (Release/x64 etc.)
sys.path.append('/usr/local/python');
# If you run `make install` (default path is `/usr/local/python` for Ubuntu), you can also access the OpenPose/python module from there. This will install OpenPose and the python library at your desired installation path. Ensure that this is in your python path in order to use it.
# sys.path.append('/usr/local/python')
from openpose import pyopenpose as op
except ImportError as e:
print('Error: OpenPose library could not be found. Did you enable `BUILD_PYTHON` in CMake and have this Python script in the right folder?')
raise e
MODEL_FOLDER = "/home/gx/openpose/models/"
body_kp_id_to_name = {
0: "Nose",
1: "Neck",
2: "RShoulder",
3: "RElbow",
4: "RWrist",
5: "LShoulder",
6: "LElbow",
7: "LWrist",
8: "MidHip",
9: "RHip",
10: "RKnee",
11: "RAnkle",
12: "LHip",
13: "LKnee",
14: "LAnkle",
15: "REye",
16: "LEye",
17: "REar",
18: "LEar",
19: "LBigToe",
20: "LSmallToe",
21: "LHeel",
22: "RBigToe",
23: "RSmallToe",
24: "RHeel",
25: "Background"}
body_kp_name_to_id = {v: k for k, v in body_kp_id_to_name.items()}
Pair = namedtuple('Pair', ['p1', 'p2', 'color'])
color_right_side = (0,255,0)
color_left_side = (0,0,255)
color_middle = (0,255,255)
color_face = (255,255,255)
pairs_head = [
Pair("Nose", "REye", color_right_side),
Pair("Nose", "LEye", color_left_side),
Pair("REye", "REar", color_right_side),
Pair("LEye", "LEar", color_left_side)
]
pairs_upper_limbs = [
Pair("Neck", "RShoulder", color_right_side),
Pair("RShoulder", "RElbow", color_right_side),
Pair("RElbow", "RWrist", color_right_side),
Pair("Neck", "LShoulder", color_left_side),
Pair("LShoulder", "LElbow", color_left_side),
Pair("LElbow", "LWrist", color_left_side)
]
pairs_lower_limbs = [
Pair("MidHip", "RHip", color_right_side),
Pair("RHip", "RKnee", color_right_side),
Pair("RKnee", "RAnkle", color_right_side),
Pair("RAnkle", "RHeel", color_right_side),
Pair("MidHip", "LHip", color_left_side),
Pair("LHip", "LKnee", color_left_side),
Pair("LKnee", "LAnkle", color_left_side),
Pair("LAnkle", "LHeel", color_left_side)
]
pairs_spine = [
Pair("Nose", "Neck", color_middle),
Pair("Neck", "MidHip", color_middle)
]
pairs_feet = [
Pair("RAnkle", "RBigToe", color_right_side),
Pair("RAnkle", "RHeel", color_right_side),
Pair("LAnkle", "LBigToe", color_left_side),
Pair("LAnkle", "LHeel", color_left_side)
]
pairs_body = pairs_head + pairs_upper_limbs + pairs_lower_limbs + pairs_spine + pairs_feet
face_kp_id_to_name = {}
for i in range(17):
face_kp_id_to_name[i] = f"Jaw{i+1}"
for i in range(5):
face_kp_id_to_name[i+17 ] = f"REyebrow{5-i}"
face_kp_id_to_name[i+22] = f"LEyebrow{i+1}"
for i in range(6):
face_kp_id_to_name[(39-i) if i<4 else (45-i)] = f"REye{i+1}"
face_kp_id_to_name[i+42] = f"LEye{i+1}"
face_kp_id_to_name[68] = "REyeCenter"
face_kp_id_to_name[69] = "LEyeCenter"
for i in range(9):
face_kp_id_to_name[27+i] = f"Nose{i+1}"
for i in range(12):
face_kp_id_to_name[i+48] = f"OuterLips{i+1}"
for i in range(8):
face_kp_id_to_name[i+60] = f"InnerLips{i+1}"
face_kp_name_to_id = {v: k for k, v in face_kp_id_to_name.items()}
pairs_jaw = [ Pair(f"Jaw{i+1}", f"Jaw{i+2}", color_face) for i in range(16)]
pairs_nose = [ Pair(f"Nose{i+1}", f"Nose{i+2}", color_face) for i in range(3)] + [ Pair(f"Nose{i+1}", f"Nose{i+2}", color_face) for i in range(4,8)]
pairs_left_eye = [ Pair(f"LEye{i+1}", f"LEye{i+2}", color_face) for i in range(5)] + [Pair("LEye6","LEye1",color_face)]
pairs_right_eye = [ Pair(f"REye{i+1}", f"REye{i+2}", color_face) for i in range(5)] + [Pair("REye6","REye1",color_face)]
pairs_eyes = pairs_left_eye + pairs_right_eye
pairs_left_eyebrow = [ Pair(f"LEyebrow{i+1}", f"LEyebrow{i+2}", color_face) for i in range(4)]
pairs_right_eyebrow = [ Pair(f"REyebrow{i+1}", f"REyebrow{i+2}", color_face) for i in range(4)]
pairs_eyesbrow = pairs_left_eyebrow + pairs_right_eyebrow
pairs_outer_lips = [ Pair(f"OuterLips{i+1}", f"OuterLips{i+2}", color_face) for i in range(11)] + [Pair("OuterLips12","OuterLips1",color_face)]
pairs_inner_lips = [ Pair(f"InnerLips{i+1}", f"InnerLips{i+2}", color_face) for i in range(7)] + [Pair("InnerLips8","InnerLips1",color_face)]
pairs_mouth = pairs_outer_lips + pairs_inner_lips
pairs_face = pairs_jaw + pairs_nose + pairs_eyes + pairs_eyesbrow + pairs_mouth
class OP:
@staticmethod
# def distance_kps(kp1,kp2):
# x1,y1,c1 = kp1
# x2,y2,c2 = kp2
# if c1 > 0 and c2 > 0:
# return abs(x2-x1)+abs(y2-y1)
# else:
# return 0
def distance_kps(kp1,kp2):
# kp1 and kp2: numpy array of shape (3,): [x,y,conf]
x1,y1,c1 = kp1
x2,y2,c2 = kp2
if kp1[2] > 0 and kp2[2] > 0:
return np.linalg.norm(kp1[:2]-kp2[:2])
else:
return 0
@staticmethod
def distance (p1, p2):
"""
Distance between p1(x1,y1) and p2(x2,y2)
"""
return np.linalg.norm(np.array(p1)-np.array(p2))
def __init__(self, number_people_max=-1, min_size=-1, openpose_rendering=False, face_detection=False, frt=0.4, hand_detection=False, debug=False):
"""
openpose_rendering : if True, rendering is made by original Openpose library. Otherwise rendering is to the
responsability of the user (~0.2 fps faster)
"""
self.openpose_rendering = openpose_rendering
self.min_size = min_size
self.debug = debug
self.face_detection = face_detection
self.hand_detection = hand_detection
self.frt = frt
params = dict()
params["model_folder"] = MODEL_FOLDER
params["model_pose"] = "BODY_25"
params["number_people_max"] = number_people_max
if not self.openpose_rendering:
params["render_pose"] = 0
if self.face_detection:
params["face"] = True
params["face_render_threshold"] = self.frt
# if self.hand_detection:
params["hand"] = True
# Starting OpenPose
self.opWrapper = op.WrapperPython()
self.opWrapper.configure(params)
self.opWrapper.start()
self.datum = op.Datum()
def eval(self, frame):
self.frame = frame
self.datum.cvInputData = frame.copy()
self.opWrapper.emplaceAndPop([self.datum])
if self.openpose_rendering:
cv2.imshow("Openpose", self.datum.cvOutputData)
if self.datum.poseKeypoints.shape: # When no person is detected, shape = (), else (nb_persons, 25, 3)
self.body_kps = self.datum.poseKeypoints
self.face_kps = self.datum.faceKeypoints
# We sort persons by their an "estimation" of their size
# size has little to do with the real size of a person, but is a arbitrary value, here, calculated as distance(Nose, Neck) + 0.33*distance(Neck,Midhip)
sizes = np.array([self.length(pairs_spine, person_idx=i, coefs=[1, 0.33]) for i in range(self.body_kps.shape[0])])
# Sort from biggest size to smallest
order = np.argsort(-sizes)
sizes = sizes[order]
#if self.debug: print("OpenPose size =", sizes)
self.body_kps = self.body_kps[order]
# Keep only persons who are "big" enough
big_enough = sizes > self.min_size
self.body_kps = self.body_kps[big_enough]
self.nb_persons = len(self.body_kps)
if self.face_detection:
self.face_kps = self.face_kps[order]
self.face_kps = self.face_kps[big_enough]
filter=self.face_kps[:,:,2]<self.frt
self.face_kps[filter] = 0
else:
self.nb_persons = 0
self.body_kps = []
self.face_kps = []
return self.nb_persons,self.body_kps, self.face_kps
def draw_pairs_person(self, frame, kps, kp_name_to_id, pairs, person_idx=0, thickness=3, color=None):
"""
Draw on 'frame' pairs of keypoints
"""
person = kps[person_idx]
for pair in pairs:
p1_x,p1_y,p1_conf = person[kp_name_to_id[pair.p1]]
p2_x,p2_y,p2_conf = person[kp_name_to_id[pair.p2]]
if p1_conf != 0 and p2_conf != 0:
col = color if color else pair.color
cv2.line(frame, (p1_x, p1_y), (p2_x, p2_y), col, thickness)
def draw_pairs(self, frame, kps, kp_name_to_id, pairs, thickness=3, color=None):
"""
Draw on 'frame' pairs of keypoints
"""
for person_idx in range(self.nb_persons):
self.draw_pairs_person(frame, kps, kp_name_to_id, pairs, person_idx, thickness=thickness, color=color)
def draw_body(self, frame, pairs=pairs_body, thickness=3, color=None):
"""
Draw on 'frame' pairs of keypoints
"""
self.draw_pairs(frame, self.body_kps, body_kp_name_to_id, pairs, thickness, color)
def draw_face(self, frame, pairs=pairs_face, thickness=2, color=None):
"""
Draw on 'frame' pairs of keypoints
"""
self.draw_pairs(frame, self.face_kps, face_kp_name_to_id, pairs, thickness, color)
def draw_eyes_person (self, frame, person_idx=0):
eyes_status = self.check_eyes(person_idx=person_idx)
if eyes_status in [1,3]:
color = (0,200,230)
else:
color = (230,230,0)
self.draw_pairs_person(frame,self.face_kps,face_kp_name_to_id,pairs_right_eye,person_idx,2,color)
if eyes_status in [2,3]:
color = (0,200,230)
else:
color = (230,230,0)
self.draw_pairs_person(frame,self.face_kps,face_kp_name_to_id,pairs_left_eye,person_idx,2,color)
def draw_eyes (self, frame):
for person_idx in range(self.nb_persons):
self.draw_eyes_person(frame, person_idx)
def get_body_kp(self, kp_name="Neck", person_idx=0):
"""
Return the coordinates of a keypoint named 'kp_name' of the person of index 'person_idx' (from 0), or None if keypoint not detected
"""
try:
kps = self.datum.poseKeypoints[person_idx]
except:
print(f"get_body_kp: invalid person_idx '{person_idx}'")
return None
try:
x,y,conf = kps[body_kp_name_to_id[kp_name]]
except:
print(f"get_body_kp: invalid kp_name '{kp_name}'")
return None
if x or y:
return (int(x),int(y))
else:
return None
def get_face_kp(self, kp_name="Nose_Tip", person_idx=0):
"""
Return the coordinates of a keypoint named 'kp_name' of the face of the person of index 'person_idx' (from 0), or None if keypoint not detected
"""
try:
kps = self.datum.faceKeypoints[person_idx]
except:
print(f"get_face_kp: invalid person_idx '{person_idx}'")
return None
try:
x,y,conf = kps[face_kp_name_to_id[kp_name]]
except:
print(f"get_face_kp: invalid kp_name '{kp_name}'")
return None
if x or y:
return (int(x),int(y))
else:
return None
def length(self, pairs, person_idx=0, coefs = None):
"""
Calculate the mean of the length of the pairs in the list 'pairs' for the person of index 'person_idx' (from 0)
If one (or both) of the 2 points of a pair is missing, the number of pairs used to calculate the average is decremented of 1
"""
if coefs is None:
coefs = [1] * len(pairs)
person = self.body_kps[person_idx]
l_cum = 0
n = 0
for i,pair in enumerate(pairs):
l = self.distance_kps(person[body_kp_name_to_id[pair.p1]], person[body_kp_name_to_id[pair.p2]])
if l != 0:
l_cum += l * coefs[i]
n += 1
if n>0:
return l_cum/n
else:
return 0
def check_eyes(self, person_idx=0):
"""
Check if the person whose index is 'person_idx' has his eyes closed
Return :
0 if both eyes are open,
1 if only right eye is closed
2 if only left eye is closed
3 if both eyes are closed
"""
eye_aspect_ratio_threshold = 0.2 # If ear < threshold, eye is closed
reye_closed = False
reye1 = self.get_face_kp("REye1", person_idx=person_idx)
reye2 = self.get_face_kp("REye2", person_idx=person_idx)
reye3 = self.get_face_kp("REye3", person_idx=person_idx)
reye4 = self.get_face_kp("REye4", person_idx=person_idx)
reye5 = self.get_face_kp("REye5", person_idx=person_idx)
reye6 = self.get_face_kp("REye6", person_idx=person_idx)
if reye1 and reye2 and reye3 and reye4 and reye5 and reye6:
right_eye_aspect_ratio = (self.distance(reye2, reye6)+self.distance(reye3, reye5))/(2*self.distance(reye1, reye4))
if right_eye_aspect_ratio < eye_aspect_ratio_threshold:
reye_closed = True
print("RIGHT EYE CLOSED")
leye_closed = False
leye1 = self.get_face_kp("LEye1", person_idx=person_idx)
leye2 = self.get_face_kp("LEye2", person_idx=person_idx)
leye3 = self.get_face_kp("LEye3", person_idx=person_idx)
leye4 = self.get_face_kp("LEye4", person_idx=person_idx)
leye5 = self.get_face_kp("LEye5", person_idx=person_idx)
leye6 = self.get_face_kp("LEye6", person_idx=person_idx)
if leye1 and leye2 and leye3 and leye4 and leye5 and leye6:
left_eye_aspect_ratio = (self.distance(leye2, leye6)+self.distance(leye3, leye5))/(2*self.distance(leye1, leye4))
if left_eye_aspect_ratio < eye_aspect_ratio_threshold:
leye_closed = True
print("LEFT EYE CLOSED")
if reye_closed:
if leye_closed:
return 3
else:
return 1
elif leye_closed:
return 2
else:
return 0
if __name__ == '__main__' :
ap=argparse.ArgumentParser()
ap.add_argument("-i","--input",default="0",help="input video file (0, filename, rtsp://admin:[email protected]/1, ...")
ap.add_argument("-n","--number_people_max",default=-1,help="limit the number of people detected")
ap.add_argument("-f","--face",action="store_true", help="enable face keypoint detection")
ap.add_argument("--frt",type=float,default=0.4,help="face rendering threshold")
ap.add_argument("-o","--output",help="path to output video file")
ap.add_argument("-r", "--rendering",action="store_true",help="display in a separate window the original rendering made by Openpose lib")
args=ap.parse_args()
if args.input.isdigit():
args.input=int(args.input)
w_h_list = [(960,720), (640, 480), (320, 240)]
w_h_idx = 0
# Read video
video=cv2.VideoCapture(args.input)
if isinstance(args.input, int):
w,h = w_h_list[w_h_idx]
video.set(cv2.CAP_PROP_FRAME_WIDTH, w)
video.set(cv2.CAP_PROP_FRAME_HEIGHT, h)
ok, frame = video.read()
h,w,_=frame.shape
if args.output:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
out=cv2.VideoWriter(args.output,fourcc,30,(w,h))
my_op = OP(openpose_rendering=args.rendering, number_people_max=args.number_people_max, min_size=60, face_detection=args.face, frt=args.frt)
fps = FPS()
while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break
fps.update()
frame = frame.copy()
nb_persons,body_kps,face_kps = my_op.eval(frame)
#print(2)
my_op.draw_body(frame)
if args.face:
my_op.draw_face(frame)
my_op.draw_eyes(frame)
fps.display(frame)
cv2.imshow("Rendering", frame)
if args.output:
out.write(frame)
# Exit if ESC pressed
k = cv2.waitKey(1) & 0xff
if k == 27 : break
elif k== 32: # space
cv2.waitKey(0)
elif k == ord("s") and isinstance(args.input, int):
w_h_idx = (w_h_idx+1)%len(w_h_list)
w,h = w_h_list[w_h_idx]
video.set(cv2.CAP_PROP_FRAME_WIDTH, w)
video.set(cv2.CAP_PROP_FRAME_HEIGHT, h)
video.release()
cv2.destroyAllWindows()