-
Notifications
You must be signed in to change notification settings - Fork 0
/
convgru.py
183 lines (140 loc) · 6.65 KB
/
convgru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Code borrowed with thanks from:
https://github.com/ndrplz/ConvLSTM_pytorch
https://github.com/shreyaspadhy/UNet-Zoo/blob/master/CLSTM.py
https://gist.github.com/halochou/acbd669af86ecb8f988325084ba7a749
"""
import torch.nn as nn
import torch
class ConvGRUCell(nn.Module):
"""
Basic CGRU cell.
"""
def __init__(self, in_channels, hidden_channels, kernel_size, bias):
super(ConvGRUCell, self).__init__()
self.input_dim = in_channels
self.hidden_dim = hidden_channels
self.kernel_size = kernel_size
self.padding = kernel_size[0] // 2, kernel_size[1] // 2
self.bias = bias
self.update_gate = nn.Conv2d(in_channels=self.input_dim+self.hidden_dim, out_channels=self.hidden_dim,
kernel_size=self.kernel_size, padding=self.padding,
bias=self.bias)
self.reset_gate = nn.Conv2d(in_channels=self.input_dim+self.hidden_dim, out_channels=self.hidden_dim,
kernel_size=self.kernel_size, padding=self.padding,
bias=self.bias)
self.out_gate = nn.Conv2d(in_channels=self.input_dim+self.hidden_dim, out_channels=self.hidden_dim,
kernel_size=self.kernel_size, padding=self.padding,
bias=self.bias)
def forward(self, input_tensor, cur_state):
h_cur = cur_state
# data size is [batch, channel, height, width]
x_in = torch.cat([input_tensor, h_cur], dim=1)
update = torch.sigmoid(self.update_gate(x_in))
reset = torch.sigmoid(self.reset_gate(x_in))
x_out = torch.tanh(self.out_gate(torch.cat([input_tensor, h_cur * reset], dim=1)))
h_new = h_cur * (1 - update) + x_out * update
return h_new
def init_hidden(self, b, h, w):
return torch.zeros(b, self.hidden_dim, h, w).cuda()
class ConvGRU(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size, num_layers,
batch_first=False, bias=True, return_all_layers=False):
super(ConvGRU, self).__init__()
self._check_kernel_size_consistency(kernel_size)
# Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers
kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
hidden_channels = self._extend_for_multilayer(hidden_channels, num_layers)
if not len(kernel_size) == len(hidden_channels) == num_layers:
raise ValueError('Inconsistent list length.')
self.input_dim = in_channels
self.hidden_dim = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
self.bias = bias
self.return_all_layers = return_all_layers
cell_list = []
for i in range(0, self.num_layers):
cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i-1]
cell_list.append(ConvGRUCell(in_channels=cur_input_dim,
hidden_channels=self.hidden_dim[i],
kernel_size=self.kernel_size[i],
bias=self.bias))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input_tensor, hidden_state=None):
"""
Parameters
----------
input_tensor: todo
5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w)
hidden_state: todo
None. todo implement stateful
Returns
-------
last_state_list, layer_output
"""
if not self.batch_first:
# (t, b, c, h, w) -> (b, t, c, h, w)
input_tensor = input_tensor.permute(1, 0, 2, 3, 4)
# Implement stateful ConvGRU
if hidden_state is not None:
hidden_state = hidden_state
else:
b, _, _, h, w = input_tensor.shape
hidden_state = self._init_hidden(b, h, w)
layer_output_list = []
last_state_list = []
seq_len = input_tensor.size(1)
cur_layer_input = input_tensor
for layer_idx in range(self.num_layers):
h = hidden_state[layer_idx]
output_inner = []
for t in range(seq_len):
h = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :],
cur_state=h)
output_inner.append(h)
layer_output = torch.stack(output_inner, dim=1)
cur_layer_input = layer_output
layer_output_list.append(layer_output)
last_state_list.append(h)
if not self.return_all_layers:
layer_output_list = layer_output_list[-1:]
last_state_list = last_state_list[-1:]
return layer_output_list, last_state_list
def _init_hidden(self, b, h, w):
init_states = []
for i in range(self.num_layers):
init_states.append(self.cell_list[i].init_hidden(b, h, w))
return init_states
@staticmethod
def _check_kernel_size_consistency(kernel_size):
if not (isinstance(kernel_size, tuple) or
(isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))):
raise ValueError('`kernel_size` must be tuple or list of tuples')
@staticmethod
def _extend_for_multilayer(param, num_layers):
if not isinstance(param, list):
param = [param] * num_layers
return param
class ConvBGRU(nn.Module):
# Constructor
def __init__(self, in_channels, hidden_channels,
kernel_size, num_layers, bias=True, batch_first=False):
super(ConvBGRU, self).__init__()
self.forward_net = ConvGRU(in_channels, hidden_channels//2, kernel_size,
num_layers, batch_first=batch_first, bias=bias)
self.reverse_net = ConvGRU(in_channels, hidden_channels//2, kernel_size,
num_layers, batch_first=batch_first, bias=bias)
def forward(self, xforward, xreverse):
"""
xforward, xreverse = B T C H W tensors.
"""
y_out_fwd, _ = self.forward_net(xforward)
y_out_rev, _ = self.reverse_net(xreverse)
y_out_fwd = y_out_fwd[-1] # outputs of last CGRU layer = B, T, C, H, W
y_out_rev = y_out_rev[-1] # outputs of last CGRU layer = B, T, C, H, W
reversed_idx = list(reversed(range(y_out_rev.shape[1])))
y_out_rev = y_out_rev[:, reversed_idx, ...] # reverse temporal outputs.
ycat = torch.cat((y_out_fwd, y_out_rev), dim=2)
return ycat