-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtypinf.mli
4153 lines (2889 loc) · 105 KB
/
typinf.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
type __ = Obj.t
type bool =
| True
| False
type nat =
| O
| S of nat
type 'a option =
| Some of 'a
| None
type ('a, 'b) sum =
| Inl of 'a
| Inr of 'b
type ('a, 'b) prod =
| Pair of 'a * 'b
val fst : ('a1, 'a2) prod -> 'a1
val snd : ('a1, 'a2) prod -> 'a2
type 'a list =
| Nil
| Cons of 'a * 'a list
val length : 'a1 list -> nat
val app : 'a1 list -> 'a1 list -> 'a1 list
type comparison =
| Eq
| Lt
| Gt
val compOpp : comparison -> comparison
type 'a sig0 = 'a
(* singleton inductive, whose constructor was exist *)
type sumbool =
| Left
| Right
type 'a sumor =
| Inleft of 'a
| Inright
val add : nat -> nat -> nat
val sub : nat -> nat -> nat
module type EqLtLe =
sig
type t
end
module MakeOrderTac :
functor (O:EqLtLe) ->
functor (P:sig
end) ->
sig
end
module Nat :
sig
val max : nat -> nat -> nat
val eq_dec : nat -> nat -> sumbool
end
val nth : nat -> 'a1 list -> 'a1 -> 'a1
val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list
val fold_left : ('a1 -> 'a2 -> 'a1) -> 'a2 list -> 'a1 -> 'a1
val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1
val split : ('a1, 'a2) prod list -> ('a1 list, 'a2 list) prod
val combine : 'a1 list -> 'a2 list -> ('a1, 'a2) prod list
val seq : nat -> nat -> nat list
val le_lt_dec : nat -> nat -> sumbool
type positive =
| XI of positive
| XO of positive
| XH
type z =
| Z0
| Zpos of positive
| Zneg of positive
module Pos :
sig
val succ : positive -> positive
val add : positive -> positive -> positive
val add_carry : positive -> positive -> positive
val pred_double : positive -> positive
val compare_cont : comparison -> positive -> positive -> comparison
val compare : positive -> positive -> comparison
val eq_dec : positive -> positive -> sumbool
end
module Z :
sig
val double : z -> z
val succ_double : z -> z
val pred_double : z -> z
val pos_sub : positive -> positive -> z
val add : z -> z -> z
val compare : z -> z -> comparison
val max : z -> z -> z
val eq_dec : z -> z -> sumbool
end
type 'x compare0 =
| LT
| EQ
| GT
module type OrderedType =
sig
type t
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
module OrderedTypeFacts :
functor (O:OrderedType) ->
sig
module TO :
sig
type t = O.t
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : O.t -> O.t -> sumbool
val lt_dec : O.t -> O.t -> sumbool
val eqb : O.t -> O.t -> bool
end
module type UsualOrderedType =
sig
type t
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
module Z_as_OT :
sig
type t = z
val compare : z -> z -> z compare0
val eq_dec : z -> z -> sumbool
end
module type S =
sig
module E :
OrderedType
type elt = E.t
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> t compare0
val equal : t -> t -> bool
val subset : t -> t -> bool
val fold : (elt -> 'a1 -> 'a1) -> t -> 'a1 -> 'a1
val for_all : (elt -> bool) -> t -> bool
val exists_ : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> (t, t) prod
val cardinal : t -> nat
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
end
module type FinSet =
sig
module E :
UsualOrderedType
module S :
S with module E = E
type fset = S.t
type elt = S.elt
end
module Raw :
functor (X:OrderedType) ->
sig
module MX :
sig
module TO :
sig
type t = X.t
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : X.t -> X.t -> sumbool
val lt_dec : X.t -> X.t -> sumbool
val eqb : X.t -> X.t -> bool
end
type elt = X.t
type t = elt list
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val equal : t -> t -> bool
val subset : t -> t -> bool
val fold : (elt -> 'a1 -> 'a1) -> t -> 'a1 -> 'a1
val filter : (elt -> bool) -> t -> t
val for_all : (elt -> bool) -> t -> bool
val exists_ : (elt -> bool) -> t -> bool
val partition : (elt -> bool) -> t -> (t, t) prod
val cardinal : t -> nat
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
val compare : t -> t -> t compare0
end
module MakeRaw :
functor (X:UsualOrderedType) ->
sig
module Raw :
sig
module MX :
sig
module TO :
sig
type t = X.t
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : X.t -> X.t -> sumbool
val lt_dec : X.t -> X.t -> sumbool
val eqb : X.t -> X.t -> bool
end
type elt = X.t
type t = elt list
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val equal : t -> t -> bool
val subset : t -> t -> bool
val fold : (elt -> 'a1 -> 'a1) -> t -> 'a1 -> 'a1
val filter : (elt -> bool) -> t -> t
val for_all : (elt -> bool) -> t -> bool
val exists_ : (elt -> bool) -> t -> bool
val partition : (elt -> bool) -> t -> (t, t) prod
val cardinal : t -> nat
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
val compare : t -> t -> t compare0
end
module E :
sig
type t = X.t
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
module OTFacts :
sig
module TO :
sig
type t = X.t
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : X.t -> X.t -> sumbool
val lt_dec : X.t -> X.t -> sumbool
val eqb : X.t -> X.t -> bool
end
type slist =
Raw.t
(* singleton inductive, whose constructor was Build_slist *)
val this : slist -> Raw.t
val coq_Build_slist' : Raw.t -> slist
type t = slist
type elt = E.t
val mem : elt -> t -> bool
val add : elt -> t -> t
val remove : elt -> t -> t
val singleton : elt -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val equal : t -> t -> bool
val subset : t -> t -> bool
val empty : t
val is_empty : t -> bool
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
val fold : (elt -> 'a1 -> 'a1) -> t -> 'a1 -> 'a1
val cardinal : t -> nat
val filter : (elt -> bool) -> t -> t
val for_all : (elt -> bool) -> t -> bool
val exists_ : (elt -> bool) -> t -> bool
val partition : (elt -> bool) -> t -> (t, t) prod
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
module Make :
functor (X:UsualOrderedType) ->
sig
module E :
sig
type t = X.t
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
module S :
sig
module Raw :
sig
module MX :
sig
module TO :
sig
type t = X.t
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : X.t -> X.t -> sumbool
val lt_dec : X.t -> X.t -> sumbool
val eqb : X.t -> X.t -> bool
end
type elt = X.t
type t = elt list
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val equal : t -> t -> bool
val subset : t -> t -> bool
val fold : (elt -> 'a1 -> 'a1) -> t -> 'a1 -> 'a1
val filter : (elt -> bool) -> t -> t
val for_all : (elt -> bool) -> t -> bool
val exists_ : (elt -> bool) -> t -> bool
val partition : (elt -> bool) -> t -> (t, t) prod
val cardinal : t -> nat
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
val compare : t -> t -> t compare0
end
module E :
sig
type t = X.t
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
module OTFacts :
sig
module TO :
sig
type t = X.t
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : X.t -> X.t -> sumbool
val lt_dec : X.t -> X.t -> sumbool
val eqb : X.t -> X.t -> bool
end
type slist =
Raw.t
(* singleton inductive, whose constructor was Build_slist *)
val this : slist -> Raw.t
val coq_Build_slist' : Raw.t -> slist
type t = slist
type elt = E.t
val mem : elt -> t -> bool
val add : elt -> t -> t
val remove : elt -> t -> t
val singleton : elt -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val equal : t -> t -> bool
val subset : t -> t -> bool
val empty : t
val is_empty : t -> bool
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
val fold : (elt -> 'a1 -> 'a1) -> t -> 'a1 -> 'a1
val cardinal : t -> nat
val filter : (elt -> bool) -> t -> t
val for_all : (elt -> bool) -> t -> bool
val exists_ : (elt -> bool) -> t -> bool
val partition : (elt -> bool) -> t -> (t, t) prod
val compare : t -> t -> t compare0
val eq_dec : t -> t -> sumbool
end
type fset = S.t
type elt = S.elt
end
module type VARIABLES =
sig
type var
val var_default : var
module Var_as_OT :
UsualOrderedType with type t = var
module VarSet :
FinSet with module E = Var_as_OT
type vars = VarSet.S.t
val var_generate : vars -> var
val var_fresh : vars -> var
val var_of_Z : z -> var
val coq_Z_of_var : var -> z
end
module Variables :
VARIABLES
module Var_as_OT_Facts :
sig
module TO :
sig
type t = Variables.var
end
module IsTO :
sig
end
module OrderTac :
sig
end
val eq_dec : Variables.var -> Variables.var -> sumbool
val lt_dec : Variables.var -> Variables.var -> sumbool
val eqb : Variables.var -> Variables.var -> bool
end
val eq_var_dec : Variables.var -> Variables.var -> sumbool
val var_freshes : Variables.vars -> nat -> Variables.var list
module Env :
sig
type 'a env = (Variables.var, 'a) prod list
val empty : 'a1 env
val single : Variables.var -> 'a1 -> (Variables.var, 'a1) prod list
val concat : 'a1 env -> 'a1 env -> (Variables.var, 'a1) prod list
val dom : 'a1 env -> Variables.vars
val map : ('a1 -> 'a1) -> 'a1 env -> 'a1 env
val get : Variables.var -> 'a1 env -> 'a1 option
val fv_in : ('a1 -> Variables.vars) -> 'a1 env -> Variables.vars
end
val index : ('a1 -> 'a1 -> sumbool) -> nat -> 'a1 -> 'a1 list -> nat option
val list_snd : ('a1, 'a2) prod list -> 'a2 list
val map_snd : ('a2 -> 'a2) -> ('a1, 'a2) prod list -> ('a1, 'a2) prod list
val assoc :
('a1 -> 'a1 -> sumbool) -> 'a1 -> ('a1, 'a2) prod list -> 'a2 option
val cut : nat -> 'a1 list -> ('a1 list, 'a1 list) prod
val mkset : Variables.var list -> Variables.vars
type 'a set = 'a list
val set_add : ('a1 -> 'a1 -> sumbool) -> 'a1 -> 'a1 set -> 'a1 set
val set_mem : ('a1 -> 'a1 -> sumbool) -> 'a1 -> 'a1 set -> bool
val set_inter : ('a1 -> 'a1 -> sumbool) -> 'a1 set -> 'a1 set -> 'a1 set
val set_union : ('a1 -> 'a1 -> sumbool) -> 'a1 set -> 'a1 set -> 'a1 set
module type CstrIntf =
sig
type cstr
type attr
val valid_dec : cstr -> sumbool
val eq_dec : attr -> attr -> sumbool
val unique : cstr -> attr -> bool
val lub : cstr -> cstr -> cstr
end
module type CstIntf =
sig
type const
val arity : const -> nat
end
module MkDefs :
functor (Cstr:CstrIntf) ->
functor (Const:CstIntf) ->
sig
type typ =
| Coq_typ_bvar of nat
| Coq_typ_fvar of Variables.var
| Coq_typ_arrow of typ * typ
val typ_rect :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (typ -> 'a1 -> typ -> 'a1 ->
'a1) -> typ -> 'a1
val typ_rec :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (typ -> 'a1 -> typ -> 'a1 ->
'a1) -> typ -> 'a1
val typ_def : typ
type ckind = { kind_cstr : Cstr.cstr; kind_rel : (Cstr.attr, typ) prod list }
val kind_cstr : ckind -> Cstr.cstr
val kind_rel : ckind -> (Cstr.attr, typ) prod list
type kind = ckind option
type sch = { sch_type : typ; sch_kinds : kind list }
val sch_type : sch -> typ
val sch_kinds : sch -> kind list
val typ_open : typ -> typ list -> typ
val typ_fvars : Variables.var list -> typ list
val typ_open_vars : typ -> Variables.var list -> typ
val sch_open : sch -> typ list -> typ
val sch_open_vars : sch -> Variables.var list -> typ
val kind_types : kind -> typ list
val ckind_map_spec : (typ -> typ) -> ckind -> ckind
val ckind_map : (typ -> typ) -> ckind -> ckind
val kind_map : (typ -> typ) -> kind -> kind
val kind_open : kind -> typ list -> kind
type trm =
| Coq_trm_bvar of nat
| Coq_trm_fvar of Variables.var
| Coq_trm_abs of trm
| Coq_trm_let of trm * trm
| Coq_trm_app of trm * trm
| Coq_trm_cst of Const.const
val trm_rect :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (trm -> 'a1 -> 'a1) -> (trm ->
'a1 -> trm -> 'a1 -> 'a1) -> (trm -> 'a1 -> trm -> 'a1 -> 'a1) ->
(Const.const -> 'a1) -> trm -> 'a1
val trm_rec :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (trm -> 'a1 -> 'a1) -> (trm ->
'a1 -> trm -> 'a1 -> 'a1) -> (trm -> 'a1 -> trm -> 'a1 -> 'a1) ->
(Const.const -> 'a1) -> trm -> 'a1
val trm_open_rec : nat -> trm -> trm -> trm
val trm_open : trm -> trm -> trm
val trm_def : trm
val trm_inst_rec : nat -> trm list -> trm -> trm
val trm_inst : trm -> trm list -> trm
val const_app : Const.const -> trm list -> trm
type kenv = kind Env.env
val kinds_open : kind list -> typ list -> kind list
val kinds_open_vars :
kind list -> Variables.var list -> (Variables.var, kind) prod list
type env = sch Env.env
val typ_fv : typ -> Variables.vars
val typ_fv_list : typ list -> Variables.VarSet.S.t
val kind_fv : kind -> Variables.VarSet.S.t
val kind_fv_list : kind list -> Variables.VarSet.S.t
val sch_fv : sch -> Variables.VarSet.S.t
val env_fv : sch Env.env -> Variables.vars
module type DeltaIntf =
sig
val coq_type : Const.const -> sch
val reduce : Const.const -> trm list -> trm
end
module MkJudge :
functor (Delta:DeltaIntf) ->
sig
type gc_kind =
| GcAny
| GcLet
val gc_kind_rect : 'a1 -> 'a1 -> gc_kind -> 'a1
val gc_kind_rec : 'a1 -> 'a1 -> gc_kind -> 'a1
type gc_info = (bool, gc_kind) prod
val gc_raise : gc_info -> gc_info
val gc_lower : gc_info -> gc_info
end
end
module MkInfra :
functor (Cstr:CstrIntf) ->
functor (Const:CstIntf) ->
sig
module Defs :
sig
type typ =
| Coq_typ_bvar of nat
| Coq_typ_fvar of Variables.var
| Coq_typ_arrow of typ * typ
val typ_rect :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (typ -> 'a1 -> typ -> 'a1 ->
'a1) -> typ -> 'a1
val typ_rec :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (typ -> 'a1 -> typ -> 'a1 ->
'a1) -> typ -> 'a1
val typ_def : typ
type ckind = { kind_cstr : Cstr.cstr;
kind_rel : (Cstr.attr, typ) prod list }
val kind_cstr : ckind -> Cstr.cstr
val kind_rel : ckind -> (Cstr.attr, typ) prod list
type kind = ckind option
type sch = { sch_type : typ; sch_kinds : kind list }
val sch_type : sch -> typ
val sch_kinds : sch -> kind list
val typ_open : typ -> typ list -> typ
val typ_fvars : Variables.var list -> typ list
val typ_open_vars : typ -> Variables.var list -> typ
val sch_open : sch -> typ list -> typ
val sch_open_vars : sch -> Variables.var list -> typ
val kind_types : kind -> typ list
val ckind_map_spec : (typ -> typ) -> ckind -> ckind
val ckind_map : (typ -> typ) -> ckind -> ckind
val kind_map : (typ -> typ) -> kind -> kind
val kind_open : kind -> typ list -> kind
type trm =
| Coq_trm_bvar of nat
| Coq_trm_fvar of Variables.var
| Coq_trm_abs of trm
| Coq_trm_let of trm * trm
| Coq_trm_app of trm * trm
| Coq_trm_cst of Const.const
val trm_rect :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (trm -> 'a1 -> 'a1) -> (trm
-> 'a1 -> trm -> 'a1 -> 'a1) -> (trm -> 'a1 -> trm -> 'a1 -> 'a1) ->
(Const.const -> 'a1) -> trm -> 'a1
val trm_rec :
(nat -> 'a1) -> (Variables.var -> 'a1) -> (trm -> 'a1 -> 'a1) -> (trm
-> 'a1 -> trm -> 'a1 -> 'a1) -> (trm -> 'a1 -> trm -> 'a1 -> 'a1) ->
(Const.const -> 'a1) -> trm -> 'a1