-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLib_Tactic.v
496 lines (394 loc) · 17.2 KB
/
Lib_Tactic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
(***************************************************************************
* General useful tactics for Coq *
* Brian Aydemir & Arthur Charguéraud, March 2007, Coq v8.1 *
***************************************************************************)
(* ********************************************************************** *)
(** * Simple variations on existing tactics *)
(** [contradictions] replace the goal by False and prove it if False is
derivable from the context or if [discriminate] applies. *)
Ltac contradictions :=
assert False; [ try discriminate | contradiction ].
(** [cuts] does [cut] then [intro] in the first subgoal. *)
Ltac cuts H E :=
cut (E); [ intro H | idtac ].
(** [inversions H] is a shortcut for [inversion H] followed by [subst]. *)
Ltac inversions H :=
inversion H; subst.
(** [poses H E] adds an hypothesis with name H and with type the type of E. *)
Ltac poses H E :=
pose (H := E); clearbody H.
(** [puts] is a version of [poses] where Coq chooses the name introduced. *)
Ltac puts E :=
let H := fresh in poses H E.
(** [asserts H E] is a synonymous for [assert (X : E)] provided for
uniformity with the rest of the syntax. *)
Ltac asserts H E :=
assert (H : E).
(** [sets X E] replaces all occurences of E by a name X, and forgets the
fact that X is equal to X -- it makes the goal more general *)
Ltac sets X E :=
set (X := E) in *; clearbody X.
(** [introz] repeats [intro] as long as possible. Contrary to [intros],
it unfolds any definition on the way. *)
Ltac introz :=
intro; try introz.
(* ********************************************************************** *)
(** * Unfolding *)
(** [folds] is a shortcut for [fold in *] *)
Tactic Notation "folds" constr(H) :=
fold H in *.
Tactic Notation "folds" constr(H1) constr(H2) :=
folds H1; folds H2.
Tactic Notation "folds" constr(H1) constr(H2) constr(H3) :=
folds H1; folds H2; folds H3.
(** [unfolds] is a shortcut for [unfold in *] *)
Tactic Notation "unfolds" reference(F1) :=
unfold F1 in *.
Tactic Notation "unfolds" reference(F1) reference(F2) :=
unfold F1 in *; unfold F2 in *.
Tactic Notation "unfolds" reference(F1) reference(F2) reference(F3) :=
unfold F1 in *; unfold F2 in *; unfold F3 in *.
(** [unfold_hd] unfolds the definition at the head of the goal. *)
Tactic Notation "unfold_hd" :=
match goal with
| |- ?P => unfold P
| |- ?P _ => unfold P
| |- ?P _ _ => unfold P
| |- ?P _ _ _ => unfold P
| |- ?P _ _ _ _ => unfold P
end.
(* ********************************************************************** *)
(** * Simplification *)
(** [simpls] is a shortcut for [simpl in *] *)
Tactic Notation "simpls" :=
simpl in *.
Tactic Notation "simpls" reference(F1) :=
simpl F1 in *.
Tactic Notation "simpls" reference(F1) reference(F2) :=
simpl F1 in *; simpl F2 in *.
Tactic Notation "simpls" reference(F1) reference(F2) reference(F3) :=
simpl F1 in *; simpl F2 in *; simpl F3 in *.
(** [unsimpl E] replaces all occurence of X by E, where X is the result
which tactic [simpl] would give when applied to E. *)
Tactic Notation "unsimpl" constr(E) :=
let F := (eval simpl in E) in change F with E.
Tactic Notation "unsimpl" constr(E) "in" hyp(H) :=
let F := (eval simpl in E) in change F with E in H.
(* ********************************************************************** *)
(** * Rewriting *)
(** [rewrites] is an iterated version of [rewrite]. Beware of loops! *)
Tactic Notation "rewrites" constr(E) :=
repeat rewrite E.
Tactic Notation "rewrites" "<-" constr(E) :=
repeat rewrite <- E.
Tactic Notation "rewrites" constr(E) "in" ident(H) :=
repeat rewrite E in H.
Tactic Notation "rewrites" "<-" constr(E) "in" ident(H) :=
repeat rewrite <- E in H.
(** [asserts_rew] can be used to assert an equality holds and rewrite it
straight away in the current goal *)
Tactic Notation "asserts_rew" constr(E) :=
let EQ := fresh in (assert (EQ : E);
[ idtac | rewrite EQ; clear EQ ]).
Tactic Notation "asserts_rew" "<-" constr(E) :=
let EQ := fresh in (assert (EQ : E);
[ idtac | rewrite <- EQ; clear EQ ]).
Tactic Notation "asserts_rew" constr(E) "in" hyp(H) :=
let EQ := fresh in (assert (EQ : E);
[ idtac | rewrite EQ in H; clear EQ ]).
Tactic Notation "asserts_rew" "<-" constr(E) "in" hyp(H) :=
let EQ := fresh in (assert (EQ : E);
[ idtac | rewrite <- EQ in H; clear EQ ]).
(** [do_rew] is used to perform the sequence:
rewrite the goal, execute a tactic, rewrite the goal back *)
Tactic Notation "do_rew" constr(E) tactic(T) :=
rewrite E; T; try rewrite <- E.
Tactic Notation "do_rew" "<-" constr(E) tactic(T) :=
rewrite <- E; T; try rewrite E.
(** [do_rew_2] is the same as [do_rew] but it does rewrite twice *)
Tactic Notation "do_rew_2" constr(E) tactic(T) :=
do 2 rewrite E; T; try do 2 rewrite <- E.
Tactic Notation "do_rew_2" "<-" constr(E) tactic(T) :=
do 2 rewrite <- E; T; try do 2 rewrite E.
(* ********************************************************************** *)
(** * Generalization *)
(**
[gen_eq c as x H] takes all occurrences of [c] in the current goal's
conclusion, replaces them by the variable [x], and introduces the equality
[x = c] as the hypothesis H. Useful if one needs to generalize the goal
prior to applying an induction tactic.
*)
Tactic Notation "gen_eq" constr(c) "as" ident(x) ident(H) :=
set (x := c); assert (H : x = c) by reflexivity; clearbody x.
(**
A variation on the above in which all occurrences of [c] in the goal are
replaced, not only those in the conclusion.
*)
Tactic Notation "gen_eq" constr(c) "as" ident(x) :=
set (x := c) in *;
let H := fresh in (assert (H : x = c) by reflexivity; clearbody x; revert H).
(** [gen] is a shortname for the [generalize dependent] tactic. *)
Tactic Notation "gen" ident(X1) :=
generalize dependent X1.
Tactic Notation "gen" ident(X1) ident(X2) :=
gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) :=
gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) :=
gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5) :=
gen X5; gen X4; gen X3; gen X2; gen X1.
(* ********************************************************************** *)
(** * Splitting N-ary Conjonctions *)
(** [split3] and [split4] respectively destruct a triple and a quadruple
of propositions. *)
Tactic Notation "split3" :=
split; [ idtac | split ].
Tactic Notation "split4" :=
split; [ idtac | split3 ].
(** [splits] calls [split] recursively as long as possible. *)
Tactic Notation "splits" :=
repeat split.
(** [esplitN] are iterated version of [esplit], used to introduce
uninstanciated variables in goal of the form [exists x, P x]. *)
Tactic Notation "esplit2" :=
esplit; esplit.
Tactic Notation "esplit3" :=
esplit; esplit; esplit.
Tactic Notation "esplit4" :=
esplit; esplit; esplit; esplit.
(* ********************************************************************** *)
(** * Branching N-ary Disjunction *)
(** Short-hand tactics for branching when the goal is of the form
[P1 \/ P2 \/ P3]. *)
Tactic Notation "or_31" := left.
Tactic Notation "or_32" := right; left.
Tactic Notation "or_33" := right; right.
(* ********************************************************************** *)
(** * Destructing conjonctions behind implications *)
(** [destructi T] is to be used on a [T] of the form
[A1 -> .. -> AN -> X /\ Y]. It generates the [Ai] as subgoals
and adds two hypotheses X and Y to the current goal. *)
Tactic Notation "destructi" constr(T) :=
let rec doit H :=
match type of H with
| ?P -> ?Q => let A := fresh "A" in
(assert (A : P); [ idtac | doit (H A); clear A ])
| _ => first [destruct H | puts H]
end in doit T.
Tactic Notation "destructi" constr(T) "as" simple_intropattern(I) :=
let rec doit H :=
match type of H with
| ?P -> ?Q => let A := fresh "A" in
(assert (A : P); [ idtac | doit (H A); clear A ])
| _ => first [destruct H as I | poses I H]
end in doit T.
(** [destructs T] calls [destruct] recursively on [T] as long as possible *)
Ltac destructs H :=
let X := fresh in let Y := fresh in
first [ destruct H as [X Y]; destructs X; destructs Y | idtac ].
(* ********************************************************************** *)
(** * Introduction *)
(** [introv] is used to repeat intro on all dependent variables; basically
it introduces all the names which are mentionned further in the goal. *)
Tactic Notation "introv" :=
let rec go _ := match goal with
| |- ?P -> ?Q => idtac
| |- forall _, _ => intro; try go tt
end in first [ go tt | intro; go tt ].
Tactic Notation "introv" simple_intropattern(I) :=
introv; intros I.
Tactic Notation "introv" simple_intropattern(I1) ident(I2) :=
introv; intros I1 I2.
Tactic Notation "introv" simple_intropattern(I1) ident(I2) ident(I3) :=
introv; intros I1 I2 I3.
Tactic Notation "introv" simple_intropattern(I1) ident(I2) ident(I3) ident(I4) :=
introv; intros I1 I2 I3 I4.
Tactic Notation "introv" simple_intropattern(I1) ident(I2) ident(I3) ident(I4) ident(I5) :=
introv; intros I1 I2 I3 I4 I5.
(* ********************************************************************** *)
(** * Exists *)
(** [exists T1 ... TN] is a shorthand for [exists T1; ...; exists TN]. *)
Tactic Notation "exists" constr(T1) :=
exists T1.
Tactic Notation "exists" constr(T1) constr(T2) :=
exists T1; exists T2.
Tactic Notation "exists" constr(T1) constr(T2) constr(T3) :=
exists T1; exists T2; exists T3.
Tactic Notation "exists" constr(T1) constr(T2) constr(T3) constr(T4) :=
exists T1; exists T2; exists T3; exists T4.
(* ********************************************************************** *)
(** * Forward Chaining - Adapted from a suggestion by Xavier Leroy *)
Lemma modus_ponens : forall (P Q : Prop),
P -> (P -> Q) -> Q.
Proof. auto. Qed.
Arguments modus_ponens [P Q].
Tactic Notation "forward" constr(x) "as" simple_intropattern(H) :=
(refine (modus_ponens (x _ _ _ _ _ _ _ _ _) _); [ | | | | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _ _ _) _); [ | | | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _ _) _); [ | | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _) _); [ | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _) _); [ | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _) _); [ | | | | intros H ])
|| (refine (modus_ponens (x _ _ _) _); [ | | | intros H ])
|| (refine (modus_ponens (x _ _) _); [ | | intros H ])
|| (refine (modus_ponens (x _) _); [ | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _ _ _ _) _); [ | | | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _ _ _) _); [ | | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _ _) _); [ | | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _ _) _); [ | | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _ _) _); [ | | | | intros H ])
|| (refine (modus_ponens (x _ _ _ _) _); [ | | | intros H ])
|| (refine (modus_ponens (x _ _ _) _); [ | | intros H ])
|| (refine (modus_ponens (x _ _) _); [ | intros H ])
|| (refine (modus_ponens (x _) _); [ intros H ]).
Tactic Notation "forward" constr(x) :=
refine (modus_ponens (x _ _ _ _ _ _ _ _ _ _) _)
|| refine (modus_ponens (x _ _ _ _ _ _ _ _ _) _)
|| refine (modus_ponens (x _ _ _ _ _ _ _ _) _)
|| refine (modus_ponens (x _ _ _ _ _ _ _) _)
|| refine (modus_ponens (x _ _ _ _ _ _) _)
|| refine (modus_ponens (x _ _ _ _ _) _)
|| refine (modus_ponens (x _ _ _ _) _)
|| refine (modus_ponens (x _ _ _) _)
|| refine (modus_ponens (x _ _) _)
|| refine (modus_ponens (x _) _).
(* ********************************************************************** *)
(** * Tactics with Automation *)
(** The name of a tactic followed by a star means: apply the tactic, then
applies [auto*] on the generated subgoals. [auto*] is a tactic
which tries to solve the goal with either auto or intuition eauto.
It leaves the goal unchanged if it can't solve the goal. *)
(** Exceptions to the naming convention are: [take] which stands for [exists*]
and [use] which stands for [puts*]. Exceptions to the behaviour for
[asserts*] which only calls [auto*] in the new subgoal, and [apply*]
which first tries [apply] and if it fails it tries [eapply] and then
in both cases calls [auto*]. *)
Tactic Notation "auto" "*" :=
try solve [ auto | intuition eauto ].
Tactic Notation "auto" "*" int_or_var(n) :=
try solve [ auto | intuition (eauto n) ].
Tactic Notation "asserts" "*" ident(H) constr(E) :=
assert (H : E); [ auto* | idtac ].
Tactic Notation "apply" "*" constr(H) :=
first [ apply H | eapply H ]; auto*.
Tactic Notation "apply" "*" constr(H) :=
first [ apply H | eapply H ]; auto*.
Tactic Notation "contradictions" "*" :=
contradictions; auto*.
Tactic Notation "destruct" "*" constr(H) :=
destruct H; auto*.
Tactic Notation "destruct" "*" constr(H) "as" simple_intropattern(I) :=
destruct H as I; auto*.
Tactic Notation "f_equal" "*" :=
f_equal; auto*.
Tactic Notation "induction" "*" constr(H) :=
induction H; auto*.
Tactic Notation "inversion" "*" constr(H) :=
inversion H; auto*.
Tactic Notation "inversions" "*" constr(H) :=
inversions H; auto*.
Tactic Notation "rewrite" "*" constr(H) :=
rewrite H; auto*.
Tactic Notation "rewrite" "*" "<-" constr(H) :=
rewrite <- H; auto*.
Tactic Notation "do_rew" "*" constr(E) tactic(T) :=
(do_rew E T); auto*.
Tactic Notation "do_rew" "*" "<-" constr(E) tactic(T) :=
(do_rew <- E T); auto*.
Tactic Notation "do_rew_2" "*" constr(E) tactic(T) :=
(do_rew_2 E T); auto*.
Tactic Notation "do_rew_2" "*" "<-" constr(E) tactic(T) :=
(do_rew_2 <- E T); auto*.
Tactic Notation "simpl" "*" :=
simpl; auto*.
Tactic Notation "simpls" "*" :=
simpls; auto*.
Tactic Notation "unsimpl" "*" constr(E) :=
unsimpl E; auto*.
Tactic Notation "unsimpl" "*" constr(E) "in" hyp(H) :=
unsimpl E in H; auto*.
Tactic Notation "split2" "*" :=
split; auto*.
Tactic Notation "split3" "*" :=
split3; auto*.
Tactic Notation "split4" "*" :=
split4; auto*.
Tactic Notation "splits" "*" :=
splits; auto*.
Tactic Notation "esplit2" "*" :=
esplit2; auto*.
Tactic Notation "esplit3" "*" :=
esplit3; auto*.
Tactic Notation "esplit4" "*" :=
esplit4; auto*.
Tactic Notation "right" "*" :=
right; auto*.
Tactic Notation "left" "*" :=
left; auto*.
Tactic Notation "or_31" "*" :=
or_31; auto*.
Tactic Notation "or_32" "*" :=
or_32; auto*.
Tactic Notation "or_33" "*" :=
or_33; auto*.
Tactic Notation "destructi" "*" constr(H) :=
destructi H; auto*.
Tactic Notation "subst" "*" :=
subst; auto*.
Tactic Notation "use" constr(expr) :=
puts expr; auto*.
Tactic Notation "use" constr(expr1) constr(expr2) :=
puts expr1; use expr2.
Tactic Notation "use" constr(expr1) constr(expr2) constr(expr3) :=
puts expr1; use expr2 expr3.
Tactic Notation "exists" "*" constr(T1) :=
exists T1; auto*.
Tactic Notation "exists" "*" constr(T1) constr(T2) :=
exists T1 T2; auto*.
Tactic Notation "exists" "*" constr(T1) constr(T2) constr(T3) :=
exists T1 T2 T3.
Tactic Notation "exists" "*" constr(T1) constr(T2) constr(T3) constr(T4) :=
exists T1 T2 T3 T4.
Tactic Notation "forward" "*" constr(x) "as" simple_intropattern(H) :=
forward x; auto*.
Tactic Notation "forward" "*" constr(x) :=
forward x; auto*.
(* ********************************************************************** *)
(** * Tactics with Limited Automation *)
Tactic Notation "rewrite" "~" constr(H) :=
rewrite H; auto.
Tactic Notation "rewrite" "~" "<-" constr(H) :=
rewrite <- H; auto.
Tactic Notation "apply" "~" constr(H) :=
first [ apply H | eapply H ]; auto.
Tactic Notation "destructi" "~" constr(H) :=
destructi H; auto.
Tactic Notation "destruct" "~" constr(H) :=
destruct H; auto.
Tactic Notation "destruct" "~" constr(H) "as" simple_intropattern(I) :=
destruct H as I; auto.
Tactic Notation "destructi" "~" constr(H) "as" simple_intropattern(I) :=
destructi H as I; auto.
Tactic Notation "split2" "~" :=
split; auto.
Tactic Notation "split3" "~" :=
split3; auto.
Tactic Notation "split4" "~" :=
split4; auto.
Tactic Notation "splits" "~" :=
splits; auto.
Tactic Notation "forward" "~" constr(x) "as" simple_intropattern(H) :=
forward x as H; auto.
Tactic Notation "forward" "~" constr(x) :=
forward x; auto.
(* ********************************************************************** *)
(** * Projections *)
(** Short-hand notations for projections from triples. *)
Notation "'proj31' P" := (proj1 P) (at level 69).
Notation "'proj32' P" := (proj1 (proj2 P)) (at level 69).
Notation "'proj33' P" := (proj2 (proj2 P)) (at level 69).
Notation "'proj41' P" := (proj1 P) (at level 69).
Notation "'proj42' P" := (proj1 (proj2 P)) (at level 69).
Notation "'proj43' P" := (proj1 (proj2 (proj2 P))) (at level 69).
Notation "'proj44' P" := (proj2 (proj2 (proj2 P))) (at level 69).