-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
executable file
·79 lines (67 loc) · 2.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
from detectron2.utils import comm
from detectron2.engine import launch
from detectron2.data import MetadataCatalog
from detectron2.checkpoint import DetectionCheckpointer
from dcfs.config import get_cfg, set_global_cfg
from dcfs.evaluation import DatasetEvaluators, verify_results
from dcfs.engine import DefaultTrainer, default_argument_parser, default_setup
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if cfg.MODEL.MASK_ON:
tasks = ("bbox", "segm",)
else:
tasks = ("bbox",)
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "coco":
from dcfs.evaluation import COCOEvaluator
evaluator_list.append(COCOEvaluator(dataset_name, tasks, True, output_folder))
if evaluator_type == "pascal_voc":
from dcfs.evaluation import PascalVOCDetectionEvaluator
return PascalVOCDetectionEvaluator(dataset_name)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def setup(args):
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
if args.opts:
cfg.merge_from_list(args.opts)
cfg.freeze()
set_global_cfg(cfg)
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)