-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpairwise_stats.py
63 lines (47 loc) · 1.87 KB
/
pairwise_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import scipy.io
from config import load_config
from dataset.factory import create as create_dataset
from dataset.pose_dataset import Batch
def remap_keys(mapping):
return [{'key': k, 'value': v} for k, v in mapping.items()]
def save_stats(stats, cfg):
mat_stats = {}
mat_stats["graph"] = []
mat_stats["means"] = []
mat_stats["std_devs"] = []
for start in range(cfg.num_joints):
for end in range(cfg.num_joints):
if start != end:
joint_pair = (start, end)
mat_stats["graph"].append([start, end])
mat_stats["means"].append(stats[joint_pair]["mean"])
mat_stats["std_devs"].append(stats[joint_pair]["std"])
print(mat_stats)
scipy.io.savemat(cfg.pairwise_stats_fn, mat_stats)
# Compute pairwise statistics at reference scale
def pairwise_stats():
cfg = load_config()
dataset = create_dataset(cfg)
dataset.set_shuffle(True)
dataset.set_pairwise_stats_collect(True)
num_images = dataset.num_images
all_pairwise_differences = {}
if cfg.mirror:
num_images *= 2
for k in range(num_images):
print('processing image {}/{}'.format(k, num_images-1))
batch = dataset.next_batch()
batch_stats = batch[Batch.data_item].pairwise_stats
for joint_pair in batch_stats:
if joint_pair not in all_pairwise_differences:
all_pairwise_differences[joint_pair] = []
all_pairwise_differences[joint_pair] += batch_stats[joint_pair]
stats = {}
for joint_pair in all_pairwise_differences:
stats[joint_pair] = {}
stats[joint_pair]["mean"] = np.mean(all_pairwise_differences[joint_pair], axis=0)
stats[joint_pair]["std"] = np.std(all_pairwise_differences[joint_pair], axis=0)
save_stats(stats, cfg)
if __name__ == '__main__':
pairwise_stats()