forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathada_fp8_gemm.cu
826 lines (677 loc) · 28.1 KB
/
ada_fp8_gemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
/***************************************************************************************************
* Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Example of running an Ada FP8 GEMM.
In addition to using FP8 Tensor Core instructions, the Ada FP8 GEMM uses a distinct epilogue
that enables additional scaling of operands/outputs, storing a pre-activation-function output
tensor (called the "auxiliary" output), and computing the absolute maximum value of the
outputs.
Pseudocode for this epilogue is as follows:
Aux = ((alpha * scale_a * scale_b) * accumulator) + ((beta * scale_c) * source) + bias
D = activation(Aux)
if Aux is fp8 type:
abs_max_output = max( abs(aux) | (for every aux in Aux))
Aux = scale_aux * Aux
endif
if D is fp8 type:
abs_max_output = max( abs(d) | (for every d in D))
D = scale_d * D
endif
Parameter Aux is optionally stored to global memory
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include "cutlass/cutlass.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/gemm_complex.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/gemm.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/epilogue/thread/linear_combination_generic_with_scaling.h"
#include "cutlass/gemm/device/gemm_universal_with_absmax.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
using ElementA = cutlass::float_e4m3_t;
using ElementB = cutlass::float_e4m3_t;
using ElementOutput = cutlass::float_e4m3_t;
using ElementAuxOutput = ElementOutput;
using ElementAccumulator = float;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::RowMajor;
static int const kStages = 3;
static int const kAlignmentA = 16;
static int const kAlignmentB = 16;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationGenericWithScalingAndAbsMax<
cutlass::epilogue::thread::ReLu,
ElementOutput,
ElementAuxOutput,
8,
ElementAccumulator,
ElementAccumulator
>;
template <typename MathOperator>
using Gemm_ = cutlass::gemm::device::GemmUniversalWithAbsMax<
ElementA, LayoutA, ElementB, LayoutB, ElementOutput, LayoutC,
ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm89,
cutlass::gemm::GemmShape<128, 64, 128>, cutlass::gemm::GemmShape<64, 32, 128>, cutlass::gemm::GemmShape<16, 8, 32>,
EpilogueOutputOp, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, kStages,
kAlignmentA, kAlignmentB, MathOperator
>;
using ElementAbsmax = typename EpilogueOutputOp::ElementAbsmax;
// Command line options parsing
struct Options {
bool help;
bool error;
bool reference_check;
cutlass::gemm::GemmCoord problem_size;
int iterations;
int warmup_iterations;
bool scale_A;
bool scale_B;
bool scale_C;
float alpha;
float beta;
Options():
help(false),
error(false),
reference_check(false),
iterations(20),
warmup_iterations(5),
scale_A(true),
scale_B(true),
scale_C(true),
alpha(1.f),
beta(0.f)
{ }
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("iterations", iterations, 20);
cmd.get_cmd_line_argument("warmup_iterations", warmup_iterations, 5);
cmd.get_cmd_line_argument("reference-check", reference_check, false);
cmd.get_cmd_line_argument("scale-A", scale_A, true);
cmd.get_cmd_line_argument("scale-B", scale_B, true);
cmd.get_cmd_line_argument("scale-C", scale_C, true);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
int m, n, k;
cmd.get_cmd_line_argument("m", m, 1024);
cmd.get_cmd_line_argument("n", n, 1024);
cmd.get_cmd_line_argument("k", k, 1024);
problem_size = cutlass::gemm::GemmCoord{m, n, k};
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "58_ada_fp8_gemm\n\n"
<< " This example executes a GEMM using Ada FP8 Tensor Core operations. In addition to performing\n"
<< " a normal GEMM, the kernel performs the following operations:\n"
<< " Aux = ((alpha * scale_a * scale_b) * accumulator) + ((beta * scale_c) * source) + bias\n"
<< " D = activation(Aux)\n\n"
<< " if Aux is fp8:\n"
<< " abs_max_output = max( abs(aux) | (for every aux in Aux) )\n"
<< " Aux = scale_aux * Aux\n\n"
<< " if D is fp8 type:\n"
<< " abs_max_output = max( abs(d) | (for every d in D) )\n"
<< " D = scale_d * D\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M dimension of the GEMM\n"
<< " --n=<int> Sets the N dimension of the GEMM\n"
<< " --k=<int> Sets the K dimension of the GEMM\n"
<< " --scale-A=<bool> Whether to apply a scaling factor to operand A (default: true)\n"
<< " --scale-B=<bool> Whether to apply a scaling factor to operand B (default: true)\n"
<< " --scale-C=<bool> Whether to apply a scaling factor to operand C (default: true)\n"
<< " --iterations=<int> Number of profiling iterations to perform\n"
<< " --warmup-iterations=<int> Number of warmup iterations to perform\n"
<< " --reference-check=<bool> If true, performs reference check\n";
return out;
}
/// Compute performance in GFLOP/s
float gflops(float runtime_s) const {
// Two flops per multiply-add
return 2.0f * float(problem_size.product()) / float(1.0e9) / runtime_s;
}
};
/// Helper class to run the kernel
template <typename Gemm>
struct TestbedRunner {
using ElementAccumulator = typename Gemm::ElementAccumulator;
using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute;
using ElementScalingFactor = typename Gemm::EpilogueOutputOp::ElementScalingFactor;
static bool const kScaleAux = Gemm::EpilogueOutputOp::kIsScalingAndAmaxAuxOutputNeeded;
static bool const kScaleOutput = Gemm::EpilogueOutputOp::kIsScalingAndAmaxOutputNeeded;
/// Initialization
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
uint64_t seed;
cutlass::HostTensor<typename Gemm::ElementA, typename Gemm::LayoutA> tensor_A;
cutlass::HostTensor<typename Gemm::ElementB, typename Gemm::LayoutB> tensor_B;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_C;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementAuxOutput, typename Gemm::LayoutC> tensor_Aux;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementOutput, typename Gemm::LayoutC> tensor_D;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_Vector;
cutlass::HostTensor<ElementAccumulator, typename Gemm::LayoutC> tmp_D;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementOutput, typename Gemm::LayoutC> reference_D;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementAuxOutput, typename Gemm::LayoutC> reference_Aux;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_A;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_B;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_C;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_D;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_Aux;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> abs_max_Aux;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> abs_max_D;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> reference_abs_max_Aux;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> reference_abs_max_D;
//
// Methods
//
TestbedRunner(
bool scaleA = true,
bool scaleB = true,
bool scaleC = true,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
/// Helper to initialize scaling factors
template <typename Element, typename Layout>
bool initialize_scale_factor(cutlass::TensorView<Element, Layout> view, uint64_t seed, int bits=0) {
cutlass::reference::host::TensorFillRandomUniform(view, seed, double(1.), double(0.), bits);
return true;
}
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<typename Gemm::ElementC>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
} else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, 0);
}
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
else {
std::cerr << "Not implemented";
return false;
}
return true;
}
/// Initializes data structures
void initialize(const Options& options) {
//
// Allocate the GEMM workspace
//
tensor_A.resize(options.problem_size.mk());
tensor_B.resize(options.problem_size.kn());
tensor_C.resize(options.problem_size.mn());
tensor_D.resize(options.problem_size.mn());
tensor_Vector.resize({1, options.problem_size.n()});
reference_D.resize(options.problem_size.mn(), false);
tmp_D.resize(options.problem_size.mn(), false);
initialize_tensor(tensor_A.host_view(), init_A, seed + 2019);
initialize_tensor(tensor_B.host_view(), init_B, seed + 2018);
initialize_tensor(tensor_C.host_view(), init_C, seed + 2017);
initialize_tensor(tensor_Vector.host_view(), init_C, seed + 2020);
// It is possible to randomly initialize to all zeros, so override this with non-zeros
// in the upper left corner of each operand.
cutlass::Coord<2> origin(0);
tensor_A.host_view().at(origin) = typename Gemm::ElementA(1);
tensor_B.host_view().at(origin) = typename Gemm::ElementB(1);
tensor_C.host_view().at(origin) = typename Gemm::ElementC(1);
tensor_Vector.host_view().at(origin) = typename Gemm::ElementC(1);
cutlass::reference::host::TensorFill(tensor_D.host_view());
cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view());
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
tensor_Vector.sync_device();
int scale_bits = 2;
if (options.scale_A) {
scale_A.resize({1, 1});
initialize_scale_factor(scale_A.host_view(), seed + 2021, scale_bits);
scale_A.sync_device();
}
if (options.scale_B) {
scale_B.resize({1, 1});
initialize_scale_factor(scale_B.host_view(), seed + 2022, scale_bits);
scale_B.sync_device();
}
if (options.scale_C) {
scale_C.resize({1, 1});
initialize_scale_factor(scale_C.host_view(), seed + 2023, scale_bits);
scale_C.sync_device();
}
if (kScaleOutput) {
scale_D.resize({1, 1});
initialize_scale_factor(scale_D.host_view(), seed + 2024, scale_bits);
scale_D.sync_device();
abs_max_D.resize({1, 1});
cutlass::reference::host::TensorFill(abs_max_D.host_view());
abs_max_D.sync_device();
reference_abs_max_D.resize({1, 1});
}
if (kScaleAux) {
tensor_Aux.resize(options.problem_size.mn());
cutlass::reference::host::TensorFill(tensor_Aux.host_view());
tensor_Aux.sync_device();
scale_Aux.resize({1, 1});
initialize_scale_factor(scale_Aux.host_view(), seed + 2025, scale_bits);
scale_Aux.sync_device();
abs_max_Aux.resize({1, 1});
cutlass::reference::host::TensorFill(abs_max_Aux.host_view());
abs_max_Aux.sync_device();
reference_Aux.resize(options.problem_size.mn(), false);
reference_abs_max_Aux.resize({1, 1});
}
}
/// Compares computed reference with device reference and outputs to a file if incorrect
bool compare_reference(const Options& options) {
tensor_D.sync_host();
bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view());
if (kScaleAux) {
tensor_Aux.sync_host();
abs_max_Aux.sync_host();
passed &= cutlass::reference::host::TensorEquals(reference_Aux.host_view(), tensor_Aux.host_view());
passed &= cutlass::reference::host::TensorEquals(abs_max_Aux.host_view(), reference_abs_max_Aux.host_view());
}
if (kScaleOutput) {
abs_max_D.sync_host();
passed &= cutlass::reference::host::TensorEquals(abs_max_D.host_view(), reference_abs_max_D.host_view());
}
if (!passed) {
std::cerr << "Reference check failed" << std::endl;
std::string output_file = "testbed_with_amax_errors.txt";
std::ofstream file(output_file);
file
<< "problem: " << options.problem_size
<< ", alpha: " << options.alpha << ", beta: " << options.beta << "\n\n";
file
<< "A =\n" << tensor_A.host_view()
<< "\nB =\n" << tensor_B.host_view()
<< "\nC =\n" << tensor_C.host_view()
<< "\nVector =\n" << tensor_Vector.host_view()
<< "\nScaleA = " << scale_A.host_view()
<< "\nScaleB = " << scale_B.host_view()
<< "\nScaleC = " << scale_C.host_view()
<< "\nScaleD = " << scale_D.host_view()
<< "\nScaleAux = " << scale_Aux.host_view()
<< "\n\nReference D =\n" << reference_D.host_view()
<< "\nComputed D =\n" << tensor_D.host_view();
if (kScaleAux) {
file
<< "\n\nReference Aux =\n" << reference_Aux.host_view()
<< "\nComputed Aux =\n" << tensor_Aux.host_view()
<< "\n\nReference Absmax Aux = " << reference_abs_max_Aux.host_view()
<< "\nComputed Absmax Aux = " << abs_max_Aux.host_view();
}
if (kScaleOutput) {
file
<< "\n\nReference Absmax D = " << reference_abs_max_D.host_view()
<< "\nComputed Absmax D = " << abs_max_D.host_view();
}
std::cerr << "Dumped results to " << output_file << std::endl;
}
return passed;
}
/// Verifies the result is a GEMM
bool verify(const Options& options) {
cutlass::Coord<2> origin(0);
ElementCompute scaled_alpha = options.alpha;
if (options.scale_A) {
scaled_alpha *= scale_A.host_view().at(origin);
}
if (options.scale_B) {
scaled_alpha *= scale_B.host_view().at(origin);
}
ElementCompute scaled_beta = options.beta;
if (options.scale_C) {
scaled_beta *= scale_C.host_view().at(origin);
}
//
// Verify
//
cutlass::reference::host::GemmComplex<
typename Gemm::ElementA, typename Gemm::LayoutA,
typename Gemm::ElementB, typename Gemm::LayoutB,
typename Gemm::ElementC, typename Gemm::LayoutC,
ElementCompute, ElementAccumulator, ElementAccumulator
>(
options.problem_size,
scaled_alpha,
tensor_A.host_ref(),
Gemm::kTransformA,
tensor_B.host_ref(),
Gemm::kTransformB,
scaled_beta,
tensor_C.host_ref(),
tmp_D.host_ref(),
ElementAccumulator(0)
);
ElementCompute tmp_abs_max_Aux(0.);
ElementCompute tmp_abs_max_D(0.);
cutlass::NumericConverter<ElementCompute, typename Gemm::ElementC> cvt_c_to_compute;
cutlass::NumericConverter<ElementCompute, ElementAccumulator> cvt_accum_to_compute;
cutlass::NumericConverter<ElementAccumulator, ElementCompute> cvt_compute_to_accum;
cutlass::NumericConverter<typename Gemm::EpilogueOutputOp::ElementOutput, ElementCompute> cvt_compute_to_d;
cutlass::NumericConverter<typename Gemm::EpilogueOutputOp::ElementAuxOutput, ElementCompute> cvt_compute_to_aux;
cutlass::absolute_value_op<ElementCompute> abs;
cutlass::maximum_with_nan_propogation<ElementCompute> max;
cutlass::epilogue::thread::ReLu<ElementCompute> act;
ElementScalingFactor d_scale = kScaleOutput ? scale_D.host_view().at(origin) : ElementScalingFactor(1.);
for (int m = 0; m < options.problem_size.m(); ++m) {
for (int n = 0; n < options.problem_size.n(); ++n) {
ElementCompute intermediate = cvt_accum_to_compute(tmp_D.host_view().at({m, n}));
ElementCompute bias = cvt_c_to_compute(tensor_Vector.host_view().at({0, n}));
ElementCompute aux = intermediate + bias;
ElementCompute d = act(aux);
tmp_abs_max_Aux = max(abs(aux), tmp_abs_max_Aux);
tmp_abs_max_D = max(abs(d), tmp_abs_max_D);
reference_D.host_view().at({m, n}) = cvt_compute_to_d(d * d_scale);
if (kScaleAux) {
reference_Aux.host_view().at({m, n}) = cvt_compute_to_aux(aux * scale_Aux.host_view().at(origin));
}
}
}
if (kScaleAux) {
reference_abs_max_Aux.host_view().at(origin) = cvt_compute_to_accum(tmp_abs_max_Aux);
}
if (kScaleOutput) {
reference_abs_max_D.host_view().at(origin) = cvt_compute_to_accum(tmp_abs_max_D);
}
return compare_reference(options);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 4)) {
std::cerr << "This example requires CUDA 12.4 or greater." << std::endl;
return false;
}
size_t smem_size = sizeof(typename Gemm::GemmKernel::SharedStorage);
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
std::cerr << "cudaGetDevice() failed with error: " << cudaGetErrorString(result) << std::endl;
return false;
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() failed with error: " << cudaGetErrorString(result) << std::endl;
return false;
}
if (properties.major < 8 || (properties.major == 8 && properties.minor < 9)) {
std::cerr << "CUTLASS's Ada FP8 GEMM example requires a device of compute capability 89 or higher.\n" << std::endl;
return false;
}
if (properties.sharedMemPerBlockOptin < smem_size) {
std::cerr << "Insufficient shared memory. Need " << smem_size
<< ", but device only has " << properties.sharedMemPerBlockOptin << std::endl;
return false;
}
return true;
}
/// Executes one test
bool run(Options& options)
{
// Waive test if insufficient CUDA device
if (!sufficient()) {
std::cerr << "Insufficient resources to run the kernel." << std::endl;
return false;
}
this->initialize(options);
//
// Initialize the GEMM operator
//
typename Gemm::EpilogueOutputOp::Params::ActivationParams activation_params{
ElementCompute(options.alpha),
ElementCompute(options.beta)
};
typename Gemm::EpilogueOutputOp::Params epilogue_params{
activation_params,
scale_A.device_data(),
scale_B.device_data(),
scale_C.device_data(),
scale_D.device_data(),
scale_Aux.device_data(),
abs_max_Aux.device_data(),
abs_max_D.device_data()
};
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
options.problem_size,
/* batch_count = */ 1,
epilogue_params,
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data(),
tensor_D.device_data(),
tensor_Aux.device_data(),
tensor_Vector.device_data(),
options.problem_size.m() * options.problem_size.k(),
options.problem_size.n() * options.problem_size.k(),
options.problem_size.m() * options.problem_size.n(),
options.problem_size.m() * options.problem_size.n(),
(int)options.problem_size.m(), // Batch stride vector
tensor_A.layout().stride(0),
tensor_B.layout().stride(0),
tensor_C.layout().stride(0),
tensor_D.layout().stride(0),
(int64_t)0 // Leading dimension of vector. This must be 0
};
Gemm gemm_op;
cutlass::Status status = gemm_op.can_implement(arguments);
if (status != cutlass::Status::kSuccess) {
std::cerr << "Gemm::can_implement() failed" << std::endl;
return false;
}
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
status = gemm_op.initialize(arguments, workspace.get());
if (status != cutlass::Status::kSuccess) {
std::cerr << "Gemm::initialize() failed" << std::endl;
return false;
}
//
// Run the GEMM
//
status = gemm_op();
if (status != cutlass::Status::kSuccess) {
std::cerr << "Gemm::run() failed" << std::endl;
return false;
}
cudaError_t cuda_error = cudaDeviceSynchronize();
if (cuda_error != cudaSuccess) {
std::cerr << "CUDA error: " << cudaGetErrorString(cuda_error) << std::endl;
return false;
}
//
// Verify
//
bool passed = true;
if (options.reference_check) {
passed &= this->verify(options);
} else {
std::cout << "Skipped reference check" << std::endl;
}
//
// Warm up
//
for (int i = 0; i < options.warmup_iterations; ++i) {
gemm_op();
}
//
// Profile
//
cudaEvent_t events[2];
cudaError_t error;
for (auto & event : events) {
error = cudaEventCreate(&event);
if (error != cudaSuccess) {
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
}
// Record an event at the start of a series of GEMM operations
error = cudaEventRecord(events[0]);
if (error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Run profiling loop
for (int iter = 0; iter < options.iterations; ++iter) {
gemm_op();
}
// Record an event when the GEMM operations have been launched.
error = cudaEventRecord(events[1]);
if (error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Wait for work on the device to complete.
error = cudaEventSynchronize(events[1]);
if (error != cudaSuccess) {
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Measure elapsed runtime
float runtime_ms = 0;
error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
if (error != cudaSuccess) {
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Compute average runtime and GFLOPs.
runtime_ms = runtime_ms / float(options.iterations);
float gflops = options.gflops(runtime_ms / 1000.0f);
std::cout << "Problem size: " << options.problem_size.m() << 'x' << options.problem_size.n() << 'x' << options.problem_size.k() << std::endl;
std::cout << "Runtime (ms): " << runtime_ms << std::endl;
std::cout << "GFLOPs/sec: " << gflops << std::endl;
// Cleanup
for (auto event : events) {
(void)cudaEventDestroy(event);
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const** argv) {
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 4) ||
(props.major != 8 && props.minor != 9)) {
//
// This example requires an NVIDIA Ada-architecture GPU.
//
std::cout
<< "CUTLASS's FP8 SM89 example requires a GPU of NVIDIA's Ada architecture "
<< "and CUDA toolkit version 12.4 or later.\n";
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, argv);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
if (options.error) {
std::cerr << "Aborting execution." << std::endl;
return -1;
}
std::cout << "Running GEMM with staged accumulation (OpMultiplyAdd)" << std::endl;
std::cout << "=====================================================" << std::endl;
TestbedRunner<Gemm_<cutlass::arch::OpMultiplyAdd>> testbed_staged_accum;
bool passed = testbed_staged_accum.run(options);
if (passed) {
std::cout << "Passed" << std::endl;
} else {
std::cout << "Failed" << std::endl;
}
std::cout << "\nRunning GEMM with fast accumulation (OpMultiplyAddFastAccum)" << std::endl;
std::cout << "============================================================" << std::endl;
TestbedRunner<Gemm_<cutlass::arch::OpMultiplyAddFastAccum>> testbed_fast_accum;
passed = testbed_fast_accum.run(options);
if (passed) {
std::cout << "Passed" << std::endl;
} else {
std::cout << "Failed" << std::endl;
}
return 0;
}