Skip to content

Latest commit

 

History

History

splitfile

Training a model by using a split file

In this example we will train a classifier for the Imagenette2-320 dataset (a subset of ImageNet) as a Cassandra dataset and then read the data into NVIDIA DALI. The raw files are already present in the /tmp directory of the provided Docker container, from which the following commands can be run.

Before starting the training process, we will see how to start the Cassandra server, how to store data into the database and the procedure of generating a split file. This file will contain essential information, including training and validation splits, which will serve as input for the training application.

Starting Cassandra server

We can start the Cassandra server shipped with the provided Docker container issuing this command:

# Start Cassandra server
$ /cassandra/bin/cassandra

Note that the shell prompt is immediately returned. Wait until state jump to NORMAL is shown (about 1 minute).

Store imagenette dataset to Cassandra DB

After the Cassandra DB server is started, it is possibile to populate it with images of the imagenette dataset.

The following commands will create the data and metadata tables within the Cassandra DB and store all imagenette images to it:

# - Create the tables in the Cassandra DB
$ cd examples/splitfile/
$ /cassandra/bin/cqlsh -f create_tables.cql

# - Fill the tables with data and metadata
$ python3 extract_serial.py /tmp/imagenette2-320 --split-subdir=train --data-table=imagenette.data --metadata-table=imagenette.metadata
$ python3 extract_serial.py /tmp/imagenette2-320 --split-subdir=val --data-table=imagenette.data --metadata-table=imagenette.metadata

## Create a split file
Once the data is in the database, we can create a split file by running the ```create_split.py``` script. To view the different options available for the script, we can use the command:

```bash
python3 create_split.py --help

That returns the following options:

Usage: create_split.py [OPTIONS]

Create Split: a splitfile generator starting from data stored on a Cassandra db.

Options:
  -d, --data-table=STR          Specify the Cassandra datatable (i.e.: keyspace.tablename)
  -m, --metadata-table=STR      Specify the Cassandra metadata table (i.e.: keyspace.tablename)

  --metadata-ifn=STR            The input filename of previous cached metadata
  --metadata-ofn=STR            The filename to cache  metadata read from db
  -o, --split-ofn=STR           The name of the output splitfile
  -r, --split-ratio=TOLIST      a comma separated values list that specifies the data proportion among desired splits (default: [8, 2])
  -b, --balance=PARSE_BALANCE   balance configuration among classes for each split (it can be a string ('original', 'random') or a a comma separated values list with one entry for each class (default: original)

Other actions:
  -h, --help                    Show the help

To create a training and validation split from the training table images in Imagenette, we can use the following command:

python3 create_split.py -d imagenette.data -m imagenette.metadata -r 8,2 -o imagenette_splitfile.pckl

The execution of this command will result in the creation of an output file that contains all the relevant information for training a model. This includes 80% of the images from the database table, which will serve as the training data, while the remaining 20% will be used for model validation. The output file is structured as a Python dictionary, with the split key containing a list of arrays, one for each split, that store the selected samples. Below is an example of a splitfile generated by the command, which contains all the necessary data retrieval information from the database

{'data_table': 'imagenette.data',
 'data_id_col': 'id',
 'data_label_col': 'label',
 'metadata_table': 'imagenette.metadata',
 'medadata_id_col': 'id',
 'metadata_label_col': 'label',
 'data_col': 'data',
 'label_type': 'int',
 'row_keys': array([UUID('62842147-18e4-4447-a2eb-a185427aca73'),
        UUID('fd77ab8a-326d-46a5-a95b-77ce7ef92f33'),
        UUID('9be2a98e-bd6e-4fb0-8595-bbaaa5de4ce0'), ...,
        UUID('80540bb4-d57a-46cc-aa0b-d2490c6e9eb4'),
        UUID('94472c7e-1ead-4499-9bce-6e54249c818a'),
        UUID('0f155548-2033-45b2-ac9b-3d0c43738765')], dtype=object),
 'split': [array([11670,  7805,   171, ...,  7043,  5710,  9004]),
  array([1136, 9020, 8754, ..., 7620,  991, 8463])],
 'num_classes': 10}

To prevent the need to retrieve metadata from the database each time a new split is created, you can save the metadata to a file and specify its name using the CLI option --metadata-ofn. For example, by executing:

python3 create_split.py -d imagenette.data -m imagenette.metadata -r 8,2 --metadata-ofn metadata.cache -o imagenette_splitfile.pckl

Next time, when generating a new split, you can skip passing the database information by utilizing the CLI option --metadata-ifn, which takes the filename of the cached metadata file as input:

python3 create_split.py --metadata-ifn metadata.cache -r 8,2 -o imagenette_splitfile.pckl

Caching the metadata table to a file can be time-saving when creating new splits, especially if the size of the metadata table is large.

Multi-GPU training using the split file

To train and validate a model using the split file that has been generated, simply run the following command:

$ torchrun --nproc_per_node=1 distrib_train_from_cassandra.py --split-fn imagenette_splitfile.pckl \
  -a resnet50 --dali_cpu --b 128 --loss-scale 128.0 --workers 4 --lr=0.4 --opt-level O2

The split file specified by the mandatory --split-fn option contains all the necessary information to retrieve the appropriate training and validation samples from the database.

The training and validation split can be specified using the CLI options --train-index and --val-index. The default values for these options are 0 and 1, respectively, which means that the first row (row 0) of the array in the split field of the split file is utilized as the training dataset, while the second row (row 1) is employed for the validation stage.

So, assuming that the command:

python3 create_split.py --metadata-ifn metadata.cache -r 2,8 -o imagenette_splitfile.pckl

creates a split where the first split contains 20% of the data from the database table, you would likely want to specify the training and validation indices as follows:

$ torchrun --nproc_per_node=1 distrib_train_from_cassandra.py --split-fn imagenette_splitfile.pckl --train-index 1 \
  --val-index 0 -a resnet50 --dali_cpu --b 128 --loss-scale 128.0 --workers 4 --lr=0.4 --opt-level O2