-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpersonalize_demo_executor.py
47 lines (36 loc) · 1.71 KB
/
personalize_demo_executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import boto3
import pandas as pd
import os
import logging
from personalize.data_manager import DataManager
from personalize.movielens_ds_handler import MovieLensDSHandler
personalize_runtime = boto3.client('personalize-runtime')
logging.basicConfig(format='%(asctime)s-%(filename)s-%(module)s-%(funcName)s-%(levelname)s:%(message)s',
filename="logs/personalize-executor.log", level="INFO")
logging.getLogger().addHandler(logging.StreamHandler())
data_manager = DataManager().load_data_to_json()
if data_manager is not None:
movielens_handler = MovieLensDSHandler()
movies = pd.read_csv(movielens_handler.data_directory + os.path.sep + movielens_handler.subdir_name + '/movies.csv', usecols=[0,1])
movies['movieId'] = movies['movieId'].astype(str)
movie_map = dict(movies.values)
# Getting a random user:
movielens_handler.prepare_dataset()
user_id, item_id = movielens_handler.interactions_df[['USER_ID', 'ITEM_ID']].sample().values[0]
get_recommendations_response = personalize_runtime.get_recommendations(
campaignArn = data_manager.campaign_arn,
userId = str(user_id),
)
# Update DF rendering
pd.set_option('display.max_rows', 30)
print("Recommendations for user: ", user_id)
item_list = get_recommendations_response['itemList']
recommendation_list = []
for item in item_list:
title = movie_map[item['itemId']]
recommendation_list.append(title)
print("Recomendations size: " + str(len(recommendation_list)))
recommendations_df = pd.DataFrame(recommendation_list, columns = ['OriginalRecs'])
print(recommendations_df)
else:
print("Must create the personalize objects with: python3 personalize_demo_creator.py")