Skip to content

Latest commit

 

History

History
167 lines (122 loc) · 5.23 KB

cats.md

File metadata and controls

167 lines (122 loc) · 5.23 KB

iota documentation for Cats

Coproducts

import iota._
import TList.::
import TListK.:::

// a coproduct of types
type Foo = Cop[Int :: String :: Double :: TNil]

// a coproduct of type constructors
type Bar[A] = CopK[Option ::: List ::: Seq ::: TNilK, A]

Injection type classes

Iota provides injection type classes to make it easy to get values in and out of your coproducts.

coproduct of types

val IntFoo    = Cop.Inject[Int,    Foo]
val StringFoo = Cop.Inject[String, Foo]
val DoubleFoo = Cop.Inject[Double, Foo]

def processFoo(foo: Foo): String = foo match {
  case IntFoo(int)       => s"int: $int"
  case StringFoo(string) => s"string: $string"
  case DoubleFoo(double) => s"double: $double"
}

val foo0: Foo = IntFoo.inj(100)
val foo1: Foo = StringFoo.inj("hello world")
val foo2: Foo = DoubleFoo.inj(47.6062)
processFoo(foo0)
// res6: String = int: 100

processFoo(foo1)
// res7: String = string: hello world

processFoo(foo2)
// res8: String = double: 47.6062

coproduct of type constructors

val OptionBar = CopK.Inject[Option, Bar]
val ListBar   = CopK.Inject[List,   Bar]
val SeqBar    = CopK.Inject[Seq,    Bar]

def processBar[A](bar: Bar[A]): String = bar match {
  case OptionBar(option) => s"option: $option"
  case ListBar(list)     => s"list: $list"
  case SeqBar(seq)       => s"seq: $seq"
}

val bar0: Bar[Int]    = OptionBar.inj(Some(200))
val bar1: Bar[String] = ListBar.inj("hello" :: "world" :: Nil)
val bar2: Bar[String] = SeqBar.inj(Seq("a", "b", "c"))
processBar(bar0)
// res11: String = option: Some(200)

processBar(bar1)
// res12: String = list: List(hello, world)

processBar(bar2)
// res13: String = seq: List(a, b, c)

Fast Interpreters

If you have interpreters for individual algebras, it's easy to use Iota create a fast fan in interpreter for the coproduct of your algebras.

You can ask Iota to create a fan in interpreter by explicitly passing in individual interpreters for your algebras. Alternatively, Iota can implicitly summon the requisite interpreters based off the type signature of your desired interpreter.

sealed abstract class UserOp[A]
sealed abstract class OrderOp[A]
sealed abstract class PriceOp[A]

type Algebra[A] = CopK[UserOp ::: OrderOp ::: PriceOp ::: TNilK, A]

val evalUserOp : UserOp  ~> Future = dummyInterpreter
val evalOrderOp: OrderOp ~> Future = dummyInterpreter
val evalPriceOp: PriceOp ~> Future = dummyInterpreter

// create the interpreter

val evalAlgebra0: Algebra ~> Future = CopK.FunctionK.of(
  evalUserOp, evalOrderOp, evalPriceOp)

// note: order doesn't matter when creating the interpreter since
// iota will sort it out for you

val evalAlgebra1: Algebra ~> Future = CopK.FunctionK.of(
  evalOrderOp, evalPriceOp, evalUserOp)

// if your interpreters are implicitly available, you can summon
// a fan in interpreter

implicit val _evalUserOp  = evalUserOp
implicit val _evalOrderOp = evalOrderOp
implicit val _evalPriceOp = evalPriceOp

val evalAlgebra2: Algebra ~> Future = CopK.FunctionK.summon

The interpreters created by Iota are optimized for speed and have a constant evaluation time. Behind the scenes, a macro generates an integer based switch statement on the coproduct's internal index value.

If you'd like to see the generated code, toggle the "show trees" option by importing iota.debug.options.ShowTrees into scope.

import iota.debug.options.ShowTrees
// import iota.debug.options.ShowTrees

CopK.FunctionK.of[Algebra, Future](evalOrderOp, evalPriceOp, evalUserOp)
// <console>:30: {
//   class CopKFunctionK$macro$4 extends _root_.iota.internal.FastFunctionK[Algebra, Future] {
//     private[this] val arr0 = evalUserOp.asInstanceOf[_root_.cats.arrow.FunctionK[Any, scala.concurrent.Future]];
//     private[this] val arr1 = evalOrderOp.asInstanceOf[_root_.cats.arrow.FunctionK[Any, scala.concurrent.Future]];
//     private[this] val arr2 = evalPriceOp.asInstanceOf[_root_.cats.arrow.FunctionK[Any, scala.concurrent.Future]];
//     override def apply[Ξ$](η$: Algebra[Ξ$]): Future[Ξ$] = (η$.index: @_root_.scala.annotation.switch) match {
//       case 0 => arr0(η$.value)
//       case 1 => arr1(η$.value)
//       case 2 => arr2(η$.value)
//       case (i @ _) => throw new _root_.java.lang.Exception(StringContext("iota internal error: index ").s().+(i).+(" out of bounds for ")...
// res28: iota.internal.FastFunctionK[Algebra,scala.concurrent.Future] = FastFunctionK[Algebra, scala.concurrent.Future]<<generated>>

Is it actually faster?

Yes. If you look at just the overhead of evaluating the deepest nested algebra in a linked list style coproduct, the cost goes up in a linear fashion as the coproduct size increase.

This can be seen below using data from Iota's benchmark suite. Here, we compare the throughput for using Iota vs Cats for a coproducts up to 25 element in size. This overhead isn't representative of what you'd encounter in real world applications as we are comparing worst case performance with the deepest nested type in the coproduct.

bench

Free

A Free example is available in the tests.