-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstoplight.jl
49 lines (43 loc) · 1.43 KB
/
stoplight.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
struct AttentionExperimentWeights <: Distribution{Multivariate,Discrete}
N::Int
total::Int
weight1::Int
end
function Base.rand(d::AttentionExperimentWeights)
rest = rand(ExperimentWeights(d.N-1, d.total - d.weight1))
[d.weight1; rest]
end
struct FixedWeights <: Distribution{Multivariate,Discrete}
weights::Vector{Int}
end
function Base.rand(d::FixedWeights)
return copy(d.weights)
end
function apply_highlighting!(s::State, feature::Int)
s.costs[feature, :] .-= 2
s
end
function simulate_attention(pol, s, feature)
b = Belief(s)
choice, payoff, cost, clicks = simulate(pol, s, b)
highlight_clicks = LinearIndices(b.matrix)[feature, :]
highlight_values = s.payoffs[feature, :]
highlight_value = highlight_values[choice]
(
n_click_highlight = isempty(clicks) ? 0 : sum(c in highlight_clicks for c in clicks),
decision_cost = cost,
highlight_value,
max_highlight_value=maximum(highlight_values),
payoff,
)
end
function sample_attention_effect((m, α); rand_feature=false)
pol = MetaGreedy(m, α)
s = experiment_state(m)
feature = rand_feature ? rand(1:m.n_feature) : 1
s_highlight = apply_highlighting!(deepcopy(s), feature)
(weight_dev = sum(abs.(s.weights .- mean(s.weights))),
weight_highlight = s.weights[feature],
with = simulate_attention(pol, s_highlight, feature),
without = simulate_attention(pol, s, feature))
end