forked from Hydroenvironment/CMIP6-WORLDCLIM-HANDLING
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Extraction_areal_Prec_V1.0
3632 lines (3307 loc) · 217 KB
/
Extraction_areal_Prec_V1.0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
################################################################################
#EXTRACTION OF PRECIPITATION AND ANOMALIES #
#FROM CMIP6 CLIMATE MODEL DATASETS USING A SINGLE POLYGON SHAPEFILE #
################################################################################
#Author: Julio Montenegro Gambini, P.E. ASCE, M.Sc.,
#PhD fellow - Technische Universiteit Delft (TU Delft), Netherlands.
#Current version: 1.0
# © Copyright 2021 Julio Montenegro.
# This script is strictly under license GPLv3
# License details: https://www.gnu.org/licenses/gpl-3.0.en.html
# Please, when using this script, cite as: "Montenegro, J. (2021).Treatment of
# of CMIP6-WorldClim downscaled information using R"
#The data used here are CMIP6 downscaled future climate projections.
#The downscaling and calibration (bias correction) was done with WorldClim
#v2.1 as baseline climate.
#More info: https://www.worldclim.org/data/cmip6/cmip6climate.html
#REQUIRED PACKAGES AND INDICATIONS!!=============================================
library(raster)
library(data.table)
library(dplyr)
library(xlsx)
#Important note: Please, given the script structure, try to generate with different
#folders the same path with equal folder names and .tif files as possible to
#avoid wrong calculations.
#Shapefile must contain only one polygon.
#Useful examples for data names:
#-Annual files must be named with: "_CNRM-CM6-1_ssp126_2021-2040.tif"
#-Seasonal anomaly files must be named as: "_CNRM-CM6-1_anual_2041-2060_ssp370.tif"
#-Seasonal anomaly files must be named as: "_CNRM-ESM2-1_autumn_2061-2080_ssp370.tif"
#Try to run some sections of the script separately or just run the entire
#script. Each section enable different directories, don`t change them
#randomly to avoid wrong calculations.
#Don`t generate .xml or other files inside each model output folder!!!
#Only .tif files are allowed on the use of this script
#SETTING MAIN WORKING DIRECTORIES===============================================
wdir="D:/RESEARCH/CMIP6 ASESSMENT PERU/CMIP6 RASTERS/pr"
wd_anom_anual="D:/RESEARCH/CMIP6 ASESSMENT PERU/CMIP6 RASTERS/anomalías/Anom_anuales"
wd_anom_seasonal="D:/RESEARCH/CMIP6 ASESSMENT PERU/CMIP6 RASTERS/anomalías/Anom_estacionales"
#LOADING THE POLYGON SHAPEFILE=====================================================
area_pol = shapefile("C:/Users/Julio/Documents/GIS DataBase/Limite_departamental/Peru_simple_WGS84GEO.shp")
#ANNUAL PRECIPITATION ##################################################### ####
#BCC-CSM2-MR====================================================================
setwd(wdir)
#SSP126
data_126_2021_2040<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("BCC-CSM2-MR/_BCC-CSM2-MR_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_BCC_CSM2_MR<-full_join(PP_a,PP_b)
rownames(PP_BCC_CSM2_MR)<-c("ssp126","ssp245","ssp370","ssp585")
#CanESM5========================================================================
#SSP126
data_126_2021_2040<-stack("CanESM5/_CanESM5_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("CanESM5/_CanESM5_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("CanESM5/_CanESM5_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("CanESM5/_CanESM5_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("CanESM5/_CanESM5_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("CanESM5/_CanESM5_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("CanESM5/_CanESM5_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("CanESM5/_CanESM5_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("CanESM5/_CanESM5_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("CanESM5/_CanESM5_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("CanESM5/_CanESM5_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("CanESM5/_CanESM5_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("CanESM5/_CanESM5_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("CanESM5/_CanESM5_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("CanESM5/_CanESM5_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("CanESM5/_CanESM5_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_CanESM5<-full_join(PP_a,PP_b)
rownames(PP_CanESM5)<-c("ssp126","ssp245","ssp370","ssp585")
#CNRM-CM6-1=====================================================================
#SSP126
data_126_2021_2040<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("CNRM-CM6-1/_CNRM-CM6-1_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_CNRM_CM6_1<-full_join(PP_a,PP_b)
rownames(PP_CNRM_CM6_1)<-c("ssp126","ssp245","ssp370","ssp585")
#CNRM-ESM2-1====================================================================
#SSP126
data_126_2021_2040<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("CNRM-ESM2-1/_CNRM-ESM2-1_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_CNRM_ESM2_1<-full_join(PP_a,PP_b)
rownames(PP_CNRM_ESM2_1)<-c("ssp126","ssp245","ssp370","ssp585")
#GFDL-ESM4====================================================================
#SSP126
data_126_2021_2040<-stack("GFDL-ESM4/_GFDL-ESM4_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("GFDL-ESM4/_GFDL-ESM4_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("GFDL-ESM4/_GFDL-ESM4_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("GFDL-ESM4/_GFDL-ESM4_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("GFDL-ESM4/_GFDL-ESM4_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("GFDL-ESM4/_GFDL-ESM4_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("GFDL-ESM4/_GFDL-ESM4_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("GFDL-ESM4/_GFDL-ESM4_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("GFDL-ESM4/_GFDL-ESM4_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("GFDL-ESM4/_GFDL-ESM4_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("GFDL-ESM4/_GFDL-ESM4_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("GFDL-ESM4/_GFDL-ESM4_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-PP_126
PP_b<-full_join(PP_370,PP_585)
PP_GFDL_ESM4<-full_join(PP_a,PP_b)
rownames(PP_GFDL_ESM4)<-c("ssp126","ssp370","ssp585")
#IPSL-CM6A-LR===================================================================
#SSP126
data_126_2021_2040<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("IPSL-CM6A-LR/_IPSL-CM6A-LR_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_IPSL_CM6A_LR<-full_join(PP_a,PP_b)
rownames(PP_IPSL_CM6A_LR)<-c("ssp126","ssp245","ssp370","ssp585")
#MIROC6=========================================================================
#SSP126
data_126_2021_2040<-stack("MIROC6/_MIROC6_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("MIROC6/_MIROC6_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("MIROC6/_MIROC6_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("MIROC6/_MIROC6_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("MIROC6/_MIROC6_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("MIROC6/_MIROC6_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("MIROC6/_MIROC6_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("MIROC6/_MIROC6_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("MIROC6/_MIROC6_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("MIROC6/_MIROC6_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("MIROC6/_MIROC6_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("MIROC6/_MIROC6_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("MIROC6/_MIROC6_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("MIROC6/_MIROC6_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("MIROC6/_MIROC6_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("MIROC6/_MIROC6_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_MIROC6<-full_join(PP_a,PP_b)
rownames(PP_MIROC6)<-c("ssp126","ssp245","ssp370","ssp585")
#MIROC-ES2L=====================================================================
#SSP126
data_126_2021_2040<-stack("MIROC-ES2L/_MIROC-ES2L_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("MIROC-ES2L/_MIROC-ES2L_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("MIROC-ES2L/_MIROC-ES2L_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("MIROC-ES2L/_MIROC-ES2L_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("MIROC-ES2L/_MIROC-ES2L_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("MIROC-ES2L/_MIROC-ES2L_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("MIROC-ES2L/_MIROC-ES2L_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("MIROC-ES2L/_MIROC-ES2L_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("MIROC-ES2L/_MIROC-ES2L_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("MIROC-ES2L/_MIROC-ES2L_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("MIROC-ES2L/_MIROC-ES2L_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("MIROC-ES2L/_MIROC-ES2L_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("MIROC-ES2L/_MIROC-ES2L_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("MIROC-ES2L/_MIROC-ES2L_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("MIROC-ES2L/_MIROC-ES2L_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("MIROC-ES2L/_MIROC-ES2L_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_MIROC_ES2L<-full_join(PP_a,PP_b)
rownames(PP_MIROC_ES2L)<-c("ssp126","ssp245","ssp370","ssp585")
#MRI-ESM2-0=====================================================================
#SSP126
data_126_2021_2040<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp126_2021-2040.tif")
datasum_126_2021_2040 <- calc(data_126_2021_2040, sum)
data_126_2041_2060<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp126_2041-2060.tif")
datasum_126_2041_2060 <- calc(data_126_2041_2060, sum)
data_126_2061_2080<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp126_2061-2080.tif")
datasum_126_2061_2080 <- calc(data_126_2061_2080, sum)
data_126_2081_2100<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp126_2081-2100.tif")
datasum_126_2081_2100 <- calc(data_126_2081_2100, sum)
PP_126_2021_2040<-data.table(extract(datasum_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(datasum_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(datasum_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(datasum_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
data_245_2021_2040<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp245_2021-2040.tif")
datasum_245_2021_2040 <- calc(data_245_2021_2040, sum)
data_245_2041_2060<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp245_2041-2060.tif")
datasum_245_2041_2060 <- calc(data_245_2041_2060, sum)
data_245_2061_2080<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp245_2061-2080.tif")
datasum_245_2061_2080 <- calc(data_245_2061_2080, sum)
data_245_2081_2100<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp245_2081-2100.tif")
datasum_245_2081_2100 <- calc(data_245_2081_2100, sum)
PP_245_2021_2040<-data.table(extract(datasum_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(datasum_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(datasum_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(datasum_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
data_370_2021_2040<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp370_2021-2040.tif")
datasum_370_2021_2040 <- calc(data_370_2021_2040, sum)
data_370_2041_2060<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp370_2041-2060.tif")
datasum_370_2041_2060 <- calc(data_370_2041_2060, sum)
data_370_2061_2080<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp370_2061-2080.tif")
datasum_370_2061_2080 <- calc(data_370_2061_2080, sum)
data_370_2081_2100<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp370_2081-2100.tif")
datasum_370_2081_2100 <- calc(data_370_2081_2100, sum)
PP_370_2021_2040<-data.table(extract(datasum_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(datasum_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(datasum_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(datasum_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
data_585_2021_2040<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp585_2021-2040.tif")
datasum_585_2021_2040 <- calc(data_585_2021_2040, sum)
data_585_2041_2060<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp585_2041-2060.tif")
datasum_585_2041_2060 <- calc(data_585_2041_2060, sum)
data_585_2061_2080<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp585_2061-2080.tif")
datasum_585_2061_2080 <- calc(data_585_2061_2080, sum)
data_585_2081_2100<-stack("MRI-ESM2-0/_MRI-ESM2-0_ssp585_2081-2100.tif")
datasum_585_2081_2100 <- calc(data_585_2081_2100, sum)
PP_585_2021_2040<-data.table(extract(datasum_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(datasum_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(datasum_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(datasum_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_MRI_ESM2_0<-full_join(PP_a,PP_b)
rownames(PP_MRI_ESM2_0)<-c("ssp126","ssp245","ssp370","ssp585")
#Exporting annual precipitation values in xlsx file=========================================================
write.xlsx(PP_BCC_CSM2_MR, file="Peru_CMIP6.xlsx", sheetName = "BCC-CSM2-MR",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_CanESM5, file="Peru_CMIP6.xlsx", sheetName = "CanESM5",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_CNRM_CM6_1, file="Peru_CMIP6.xlsx", sheetName = "CNRM-CM6-1",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_CNRM_ESM2_1, file="Peru_CMIP6.xlsx", sheetName = "CNRM-ESM2-1",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_GFDL_ESM4, file="Peru_CMIP6.xlsx", sheetName = "GFDL-ESM4",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_IPSL_CM6A_LR, file="Peru_CMIP6.xlsx", sheetName = "IPSL-CM6A-LR",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_MIROC6, file="Peru_CMIP6.xlsx", sheetName = "MIROC6",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_MIROC_ES2L, file="Peru_CMIP6.xlsx", sheetName = "MIROC-ES2L",
col.names = TRUE, row.names = TRUE, append = TRUE)
write.xlsx(PP_MRI_ESM2_0, file="Peru_CMIP6.xlsx", sheetName = "MRI-ESM2-0",
col.names = TRUE, row.names = TRUE, append = TRUE)
########CALCULATION OF ANOMALIES ########################################## ####
#ANNUAL ANOMALIES ######################################################### ####
#BCC-CSM2-MR====================================================================
#SSP126
setwd(wd_anom_anual)
setwd("BCC-CSM2-MR/ssp126/")
data_126_2021_2040<-raster(list.files(pattern = "2021-2040_ssp126.tif"))
data_126_2041_2060<-raster(list.files(pattern = "2041-2060_ssp126.tif"))
data_126_2061_2080<-raster(list.files(pattern = "2061-2080_ssp126.tif"))
data_126_2081_2100<-raster(list.files(pattern = "2081-2100_ssp126.tif"))
PP_126_2021_2040<-data.table(extract(data_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(data_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(data_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(data_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
setwd(wd_anom_anual)
setwd("BCC-CSM2-MR/ssp245/")
data_245_2021_2040<-raster(list.files(pattern = "2021-2040_ssp245.tif"))
data_245_2041_2060<-raster(list.files(pattern = "2041-2060_ssp245.tif"))
data_245_2061_2080<-raster(list.files(pattern = "2061-2080_ssp245.tif"))
data_245_2081_2100<-raster(list.files(pattern = "2081-2100_ssp245.tif"))
PP_245_2021_2040<-data.table(extract(data_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(data_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(data_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(data_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
setwd(wd_anom_anual)
setwd("BCC-CSM2-MR/ssp370/")
data_370_2021_2040<-raster(list.files(pattern = "2021-2040_ssp370.tif"))
data_370_2041_2060<-raster(list.files(pattern = "2041-2060_ssp370.tif"))
data_370_2061_2080<-raster(list.files(pattern = "2061-2080_ssp370.tif"))
data_370_2081_2100<-raster(list.files(pattern = "2081-2100_ssp370.tif"))
PP_370_2021_2040<-data.table(extract(data_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(data_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(data_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(data_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
setwd(wd_anom_anual)
setwd("BCC-CSM2-MR/ssp585/")
data_585_2021_2040<-raster(list.files(pattern = "2021-2040_ssp585.tif"))
data_585_2041_2060<-raster(list.files(pattern = "2041-2060_ssp585.tif"))
data_585_2061_2080<-raster(list.files(pattern = "2061-2080_ssp585.tif"))
data_585_2081_2100<-raster(list.files(pattern = "2081-2100_ssp585.tif"))
PP_585_2021_2040<-data.table(extract(data_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(data_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(data_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(data_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_BCC_CSM2_MR<-full_join(PP_a,PP_b)
rownames(PP_BCC_CSM2_MR)<-c("ssp126","ssp245","ssp370","ssp585")
#CanESM5====================================================================
#SSP126
setwd(wd_anom_anual)
setwd("CanESM5/ssp126/")
data_370_2021_2040<-raster(list.files(pattern = "2021-2040_ssp370.tif"))
data_370_2041_2060<-raster(list.files(pattern = "2041-2060_ssp370.tif"))
data_370_2061_2080<-raster(list.files(pattern = "2061-2080_ssp370.tif"))
data_370_2081_2100<-raster(list.files(pattern = "2081-2100_ssp370.tif"))
PP_126_2021_2040<-data.table(extract(data_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(data_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(data_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(data_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
setwd(wd_anom_anual)
setwd("CanESM5/ssp245/")
data_245_2021_2040<-raster(list.files(pattern = "2021-2040_ssp245.tif"))
data_245_2041_2060<-raster(list.files(pattern = "2041-2060_ssp245.tif"))
data_245_2061_2080<-raster(list.files(pattern = "2061-2080_ssp245.tif"))
data_245_2081_2100<-raster(list.files(pattern = "2081-2100_ssp245.tif"))
PP_245_2021_2040<-data.table(extract(data_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(data_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(data_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(data_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
setwd(wd_anom_anual)
setwd("CanESM5/ssp370/")
data_370_2021_2040<-raster(list.files(pattern = "2021-2040_ssp370.tif"))
data_370_2041_2060<-raster(list.files(pattern = "2041-2060_ssp370.tif"))
data_370_2061_2080<-raster(list.files(pattern = "2061-2080_ssp370.tif"))
data_370_2081_2100<-raster(list.files(pattern = "2081-2100_ssp370.tif"))
PP_370_2021_2040<-data.table(extract(data_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(data_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(data_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(data_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
setwd(wd_anom_anual)
setwd("CanESM5/ssp585/")
data_585_2021_2040<-raster(list.files(pattern = "2021-2040_ssp585.tif"))
data_585_2041_2060<-raster(list.files(pattern = "2041-2060_ssp585.tif"))
data_585_2061_2080<-raster(list.files(pattern = "2061-2080_ssp585.tif"))
data_585_2081_2100<-raster(list.files(pattern = "2081-2100_ssp585.tif"))
PP_585_2021_2040<-data.table(extract(data_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(data_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(data_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(data_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_CanESM5<-full_join(PP_a,PP_b)
rownames(PP_CanESM5)<-c("ssp126","ssp245","ssp370","ssp585")
#CNRM-CM6-1====================================================================
#SSP126
setwd(wd_anom_anual)
setwd("CNRM-CM6-1/ssp126/")
data_126_2021_2040<-raster(list.files(pattern = "2021-2040_ssp126.tif"))
data_126_2041_2060<-raster(list.files(pattern = "2041-2060_ssp126.tif"))
data_126_2061_2080<-raster(list.files(pattern = "2061-2080_ssp126.tif"))
data_126_2081_2100<-raster(list.files(pattern = "2081-2100_ssp126.tif"))
PP_126_2021_2040<-data.table(extract(data_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(data_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(data_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(data_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
setwd(wd_anom_anual)
setwd("CNRM-CM6-1/ssp245/")
data_245_2021_2040<-raster(list.files(pattern = "2021-2040_ssp245.tif"))
data_245_2041_2060<-raster(list.files(pattern = "2041-2060_ssp245.tif"))
data_245_2061_2080<-raster(list.files(pattern = "2061-2080_ssp245.tif"))
data_245_2081_2100<-raster(list.files(pattern = "2081-2100_ssp245.tif"))
PP_245_2021_2040<-data.table(extract(data_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(data_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(data_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(data_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
setwd(wd_anom_anual)
setwd("CNRM-CM6-1/ssp370/")
data_370_2021_2040<-raster(list.files(pattern = "2021-2040_ssp370.tif"))
data_370_2041_2060<-raster(list.files(pattern = "2041-2060_ssp370.tif"))
data_370_2061_2080<-raster(list.files(pattern = "2061-2080_ssp370.tif"))
data_370_2081_2100<-raster(list.files(pattern = "2081-2100_ssp370.tif"))
PP_370_2021_2040<-data.table(extract(data_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(data_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(data_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(data_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
setwd(wd_anom_anual)
setwd("CNRM-CM6-1/ssp585/")
data_585_2021_2040<-raster(list.files(pattern = "2021-2040_ssp585.tif"))
data_585_2041_2060<-raster(list.files(pattern = "2041-2060_ssp585.tif"))
data_585_2061_2080<-raster(list.files(pattern = "2061-2080_ssp585.tif"))
data_585_2081_2100<-raster(list.files(pattern = "2081-2100_ssp585.tif"))
PP_585_2021_2040<-data.table(extract(data_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(data_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(data_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(data_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_CNRM_CM6_1<-full_join(PP_a,PP_b)
rownames(PP_CNRM_CM6_1)<-c("ssp126","ssp245","ssp370","ssp585")
#CNRM-ESM2-1====================================================================
#SSP126
setwd(wd_anom_anual)
setwd("CNRM-ESM2-1/ssp126/")
data_126_2021_2040<-raster(list.files(pattern = "2021-2040_ssp126.tif"))
data_126_2041_2060<-raster(list.files(pattern = "2041-2060_ssp126.tif"))
data_126_2061_2080<-raster(list.files(pattern = "2061-2080_ssp126.tif"))
data_126_2081_2100<-raster(list.files(pattern = "2081-2100_ssp126.tif"))
PP_126_2021_2040<-data.table(extract(data_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(data_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(data_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(data_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
setwd(wd_anom_anual)
setwd("CNRM-ESM2-1/ssp245/")
data_245_2021_2040<-raster(list.files(pattern = "2021-2040_ssp245.tif"))
data_245_2041_2060<-raster(list.files(pattern = "2041-2060_ssp245.tif"))
data_245_2061_2080<-raster(list.files(pattern = "2061-2080_ssp245.tif"))
data_245_2081_2100<-raster(list.files(pattern = "2081-2100_ssp245.tif"))
PP_245_2021_2040<-data.table(extract(data_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(data_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(data_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(data_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
setwd(wd_anom_anual)
setwd("CNRM-ESM2-1/ssp370/")
data_370_2021_2040<-raster(list.files(pattern = "2021-2040_ssp370.tif"))
data_370_2041_2060<-raster(list.files(pattern = "2041-2060_ssp370.tif"))
data_370_2061_2080<-raster(list.files(pattern = "2061-2080_ssp370.tif"))
data_370_2081_2100<-raster(list.files(pattern = "2081-2100_ssp370.tif"))
PP_370_2021_2040<-data.table(extract(data_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(data_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(data_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(data_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
setwd(wd_anom_anual)
setwd("CNRM-ESM2-1/ssp585/")
data_585_2021_2040<-raster(list.files(pattern = "2021-2040_ssp585.tif"))
data_585_2041_2060<-raster(list.files(pattern = "2041-2060_ssp585.tif"))
data_585_2061_2080<-raster(list.files(pattern = "2061-2080_ssp585.tif"))
data_585_2081_2100<-raster(list.files(pattern = "2081-2100_ssp585.tif"))
PP_585_2021_2040<-data.table(extract(data_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(data_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(data_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(data_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
PP_a<-full_join(PP_126,PP_245)
PP_b<-full_join(PP_370,PP_585)
PP_CNRM_ESM2_1<-full_join(PP_a,PP_b)
rownames(PP_CNRM_ESM2_1)<-c("ssp126","ssp245","ssp370","ssp585")
#GFDL-ESM4====================================================================
#SSP126
setwd(wd_anom_anual)
setwd("GFDL-ESM4/ssp126/")
data_126_2021_2040<-raster(list.files(pattern = "2021-2040_ssp126.tif"))
data_126_2041_2060<-raster(list.files(pattern = "2041-2060_ssp126.tif"))
data_126_2061_2080<-raster(list.files(pattern = "2061-2080_ssp126.tif"))
data_126_2081_2100<-raster(list.files(pattern = "2081-2100_ssp126.tif"))
PP_126_2021_2040<-data.table(extract(data_126_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_126_2041_2060<-data.table(extract(data_126_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_126_2061_2080<-data.table(extract(data_126_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_126_2081_2100<-data.table(extract(data_126_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_126<-data.frame(c(PP_126_2021_2040,PP_126_2041_2060,PP_126_2061_2080,PP_126_2081_2100))
colnames(PP_126)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP245
setwd(wd_anom_anual)
setwd("GFDL-ESM4/ssp245/")
data_245_2021_2040<-raster(list.files(pattern = "2021-2040_ssp245.tif"))
data_245_2041_2060<-raster(list.files(pattern = "2041-2060_ssp245.tif"))
data_245_2061_2080<-raster(list.files(pattern = "2061-2080_ssp245.tif"))
data_245_2081_2100<-raster(list.files(pattern = "2081-2100_ssp245.tif"))
PP_245_2021_2040<-data.table(extract(data_245_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_245_2041_2060<-data.table(extract(data_245_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_245_2061_2080<-data.table(extract(data_245_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_245_2081_2100<-data.table(extract(data_245_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_245<-data.frame(c(PP_245_2021_2040,PP_245_2041_2060,PP_245_2061_2080,PP_245_2081_2100))
colnames(PP_245)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP370
setwd(wd_anom_anual)
setwd("GFDL-ESM4/ssp370/")
data_370_2021_2040<-raster(list.files(pattern = "2021-2040_ssp370.tif"))
data_370_2041_2060<-raster(list.files(pattern = "2041-2060_ssp370.tif"))
data_370_2061_2080<-raster(list.files(pattern = "2061-2080_ssp370.tif"))
data_370_2081_2100<-raster(list.files(pattern = "2081-2100_ssp370.tif"))
PP_370_2021_2040<-data.table(extract(data_370_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_370_2041_2060<-data.table(extract(data_370_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_370_2061_2080<-data.table(extract(data_370_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_370_2081_2100<-data.table(extract(data_370_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_370<-data.frame(c(PP_370_2021_2040,PP_370_2041_2060,PP_370_2061_2080,PP_370_2081_2100))
colnames(PP_370)<-c("2021-2040","2041-2060","2061-2080","2081-2100")
#SSP585
setwd(wd_anom_anual)
setwd("GFDL-ESM4/ssp585/")
data_585_2021_2040<-raster(list.files(pattern = "2021-2040_ssp585.tif"))
data_585_2041_2060<-raster(list.files(pattern = "2041-2060_ssp585.tif"))
data_585_2061_2080<-raster(list.files(pattern = "2061-2080_ssp585.tif"))
data_585_2081_2100<-raster(list.files(pattern = "2081-2100_ssp585.tif"))
PP_585_2021_2040<-data.table(extract(data_585_2021_2040,area_pol,fun=mean,na.rm = TRUE))
PP_585_2041_2060<-data.table(extract(data_585_2041_2060,area_pol,fun=mean,na.rm = TRUE))
PP_585_2061_2080<-data.table(extract(data_585_2061_2080,area_pol,fun=mean,na.rm = TRUE))
PP_585_2081_2100<-data.table(extract(data_585_2081_2100,area_pol,fun=mean,na.rm = TRUE))
PP_585<-data.frame(c(PP_585_2021_2040,PP_585_2041_2060,PP_585_2061_2080,PP_585_2081_2100))
colnames(PP_585)<-c("2021-2040","2041-2060","2061-2080","2081-2100")